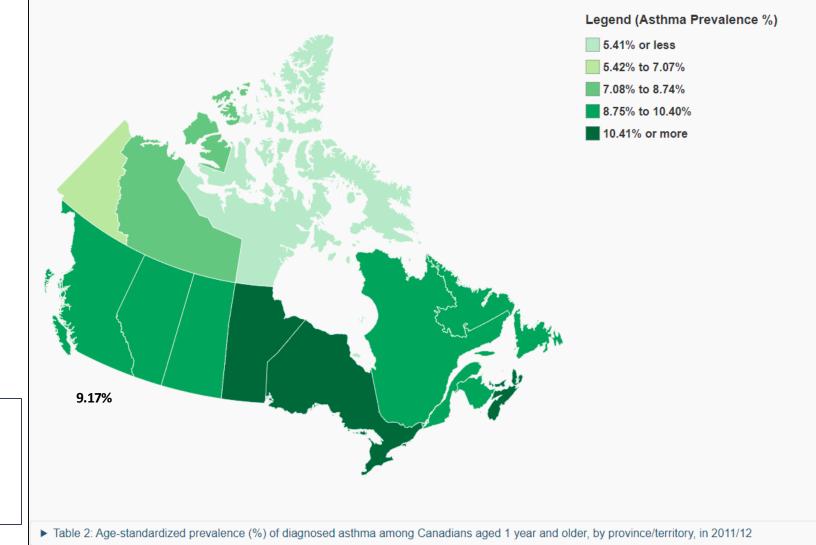

Update on Adult Asthma Management

Celine Bergeron, MD, FRCPC, MSc Respirologist VGH/UBC Vancouver, 7 February 2024 We would like to acknowledge that we are gathered today on the traditional territories of the Musqueam, Squamish and Tsleil-Waututh peoples.

Speaker Disclosures

- Employer: British Columbia Health Services
- Advisory Boards: Sanofi-Regeneron, Astra-Zeneca, ValeoPharma, Takeda
- Speaker fees/honoraria: Astra-Zeneca-Amgen, GlaxoSmithKline, Grifols, ValeoPharma, Sanofi-Regeneron
- Research Grants (PAID TO UNIVERSITY): British Columbia Lung Foundation (collaborator), CIHR (collaborator)
- Research Grants from Private Industries or Non-profit Funds (PAID TO UNIVERSITY): Astra-Zeneca, GlaxoSmithKline, Biohaven, Sanofi-Aventis, Regeneron

Objectives


- 1. Review the mild adult asthma management in 2024
- 2. Understand the management of moderate to severe adult asthma
- 3. Overview of available biological therapy for severe asthma
- 4. Recognize the risk factors of exacerbations and mortality in adult asthma
- 5. Discuss the ISAR data on socioeconomic disparity in severe asthma

Asthma - prevalence

- Worldwide
 - Prevalence 1-18%
 - 346,000 deaths/year
- In Canada
 - Affects 8.4% of Canadians
 - 9.8% Females
 - 7.0% Males
- 35th cause of death worldwide
 - Rate of asthma deaths 1.5-2.0 / 10,000

Risk factors of mortality

- Poorly controlled asthma
- Prior history of near-fatal asthma
- In all severity of asthma

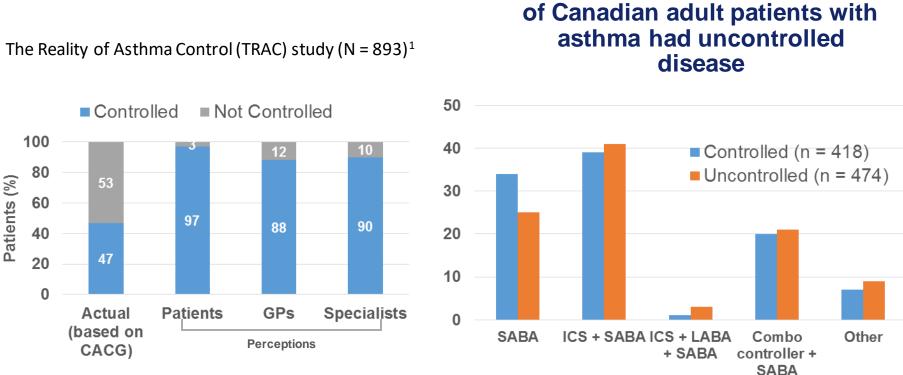
GINA 2017 Statistics Canada and Public Health Agency of Canada

Mild Adult Asthma Management

Objective 1

NEW Change to criteria for well-controlled asthma

Characteristic	Frequency or value
Daytime symptoms	≤ 2 days/week
Nighttime symptoms	< 1 night/week and mild
Physical activity	Normal
Exacerbations	Mild and infrequent*
Absence from work or school due to asthma	None
Need for a reliever (SABA or bud/form) [†]	≤ 2 doses per week
FEV ₁ or PEF	≥ 90% of personal best
PEF diurnal variation	< 10-15%#
Sputum eosinophils	< 2-3%●


A patient w ho meets all of the above criteria w ould be considered to have w ell-controlled asthma

- * A mild exacerbation is an increase in asthma symptoms from baseline that does not require systemic steroids, an ED visit, or a hospitalization. "Infrequent" is not specifically defined, since the frequency of mild exacerbations that patients consider an impairment to quality of life varies. If the patient feels that the frequency of mild exacerbations is impairing their quality of life, then their asthma should be considered poorly-controlled. If a patient is having frequent mild exacerbations, they should be assessed to determine if at baseline, they have poorly-controlled asthma.
- † There are no established criteria for control w hen using bud/form as a reliever, how ever, use of a reliever often indicates that a patient is having symptoms and is a criterion that can be objectively assessed.
- # Diurnal variation is calculated as the highest peak expiratory flow (PEF) minus the low est divided by the highest peak flow multiplied by 100, for morning and night (determined over a tw o-week period).
- Consider in adults ≥ 18 years of age with uncontrolled moderate to severe asthma w ho are assessed in specialist centres.

THE MAJORITY OF CANADIANS WITH ASTHMA **ARE INADEQUATELY CONTROLLED**

53%

FitzGerald, JM, et al. Can Resp J 2006;13(5):253-259.

Importance to achieve good control of asthma

- Population
- Economic burden of asthma In British-Columbia:
 - \$46.3 to \$62 millions per year related to direct costs of asthma
- Sub-optimal asthma control is responsible for significant cost
 - 10% prevalence reduction in suboptima control = 18% reduction in cost

Sadatsafavi, M. et al. 2010: CRJ. 74-80 Zafari, Z. et al. 2018: Resp Med. 138: 7-12

Individual



FIG 1. Goals of asthma management.

Bateman E. Et al. J Allergy Clin Immunol 2010;125:600-8

Goals of asthma treatment

- § Few asthma symptoms
- § No sleep disturbance
- § No exercise limitation
- § Maintain normal lung function
- § Prevent flare-ups (exacerbations)
- § Prevent asthma deaths

§ Minimize medication side-effects (including OCS)

- § The patient's goals may be different
- § Symptom control and risk may be discordant
 - § Patients with few symptoms can still have severe exacerbations

lung function

Risk reduction

Symptom control (e.g. ACT, ACQ)

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Patient (and parent/caregiver) preferences and goals

Symptoms Exacerbations Side-effects Lung function Comorbidities Patient (and parent/ caregiver) satisfaction

ADJUST

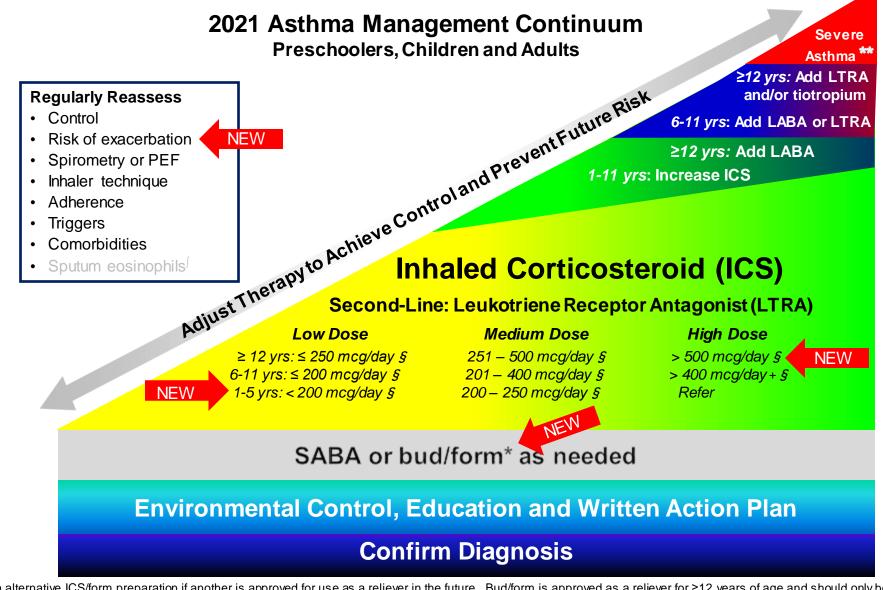
REVIEW

Toons in the second sec

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications (adjust down/up/ between tracks) Education & skills training

GINA 2023 – Adults & adolescents 12+ years

Personalized asthma management Assess, Adjust, Review for individual patient needs


Symptom control & modifiable risk factors (see Box 2-2) Comorbidities ASSES Inhaler technique & adherence Patient preferences and goals REVIEW Symptoms Exacerbations Side-effects Treatment of modifiable risk factors Lung function ADJUST and comorbidities Comorbidities Non-pharmacological strategies Patient satisfaction Asthma medications (adjust down/up/between tracks) Education & skills training **STEP 5 STEP 4** Add-on LAMA Refer for assessment **STEP 3** Medium dose **TRACK 1: PREFERRED** of phenotype. Consider maintenance Low dose **CONTROLLER** and **RELIEVER STEPS 1 – 2** high dose maintenance **ICS-formoterol** Using ICS-formoterol as the maintenance ICS-formoterol. As-needed-only low dose ICS-formoterol **ICS-formoterol** reliever* reduces the risk of ± anti-IgE, anti-IL5/5R, exacerbations compared with anti-IL4Rα, anti-TSLP using a SABA reliever, and is a See GINA RELIEVER: As-needed low-dose ICS-formoterol* severe asthma guide **STEP 5 STEP 4** Add-on LAMA Refer for assessment Medium/high **STEP 3** of phenotype. Consider dose maintenance Low dose **STEP 2 TRACK 2:** Alternative high dose maintenance ICS-LABA maintenance **STEP 1 CONTROLLER** and **RELIEVER** Low dose ICS-LABA, ± anti-IgE, **ICS-LABA** Take ICS whenever Before considering a regimen maintenance ICS anti-IL5/5R, anti-IL4Ra, SABA taken* with SABA reliever, check if the anti-TSLP patient is likely to adhere to daily RELIEVER: as-needed ICS-SABA*, or as-needed SABA controller treatment Add azithromycin (adults) or Other controller options (limited Low dose ICS whenever Medium dose ICS. or Add LAMA or LTRA or LTRA. As last resort consider indications, or less evidence for HDM SLIT. or switch to SABA taken*, or daily LTRA, add LTRA. or add adding low dose OCS but high dose ICS or add HDM SLIT HDM SLIT efficacy or safety - see text) consider side-effects

Confirmation of diagnosis if necessary

simpler regimen

Box 3-12 © Global Initiative for Asthma, www.ginasthma.org

INITIAT,

- * Or an alternative ICS/form preparation if another is approved for use as a reliever in the future. Bud/form is approved as a reliever for ≥12 years of age and should only be used as a reliever in individuals using it as monotherapy or in conjunction with bud/form maintenance therapy
- **§** HFA Fluticas one propionate or equivalent
- + Not approved for use in Canada
- In adults, 18 years old and over with moderate to severe as thma assessed in specialist centres
- ** For severe asthma refer to CTS 2017 Recognition and management of Severe Asthma Position Statement

NEW Assessing risk of exacerbations in addition to asthma control

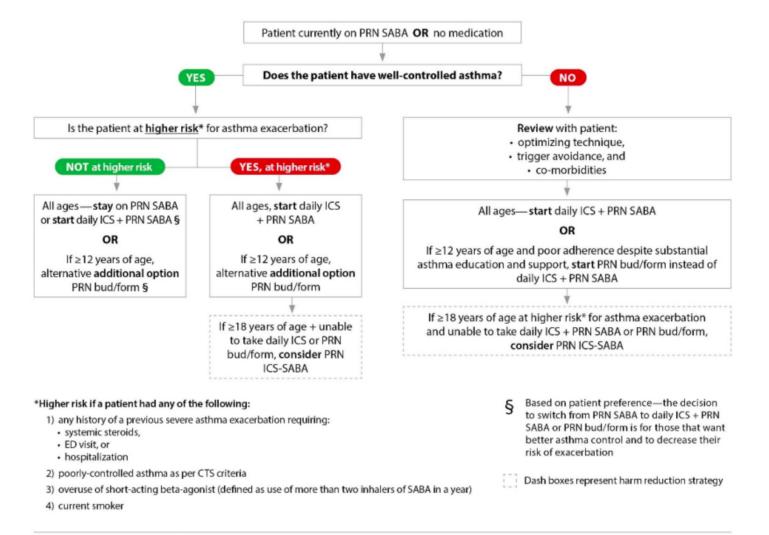
- When deciding on optimal treatment, in addition to evaluating asthma control, risk of asthma exacerbation should be assessed.
- A higher risk for an exacerbation is defined by any of the following criteria:

History of a previous severe asthma exacerbation (requiring any of: systemic steroids; ED visit; or hospitalization)

Poorly-controlled asthma as per CTS criteria

Overuse of SABA (defined as use of more than 2 inhalers of SABA in a year¹); or

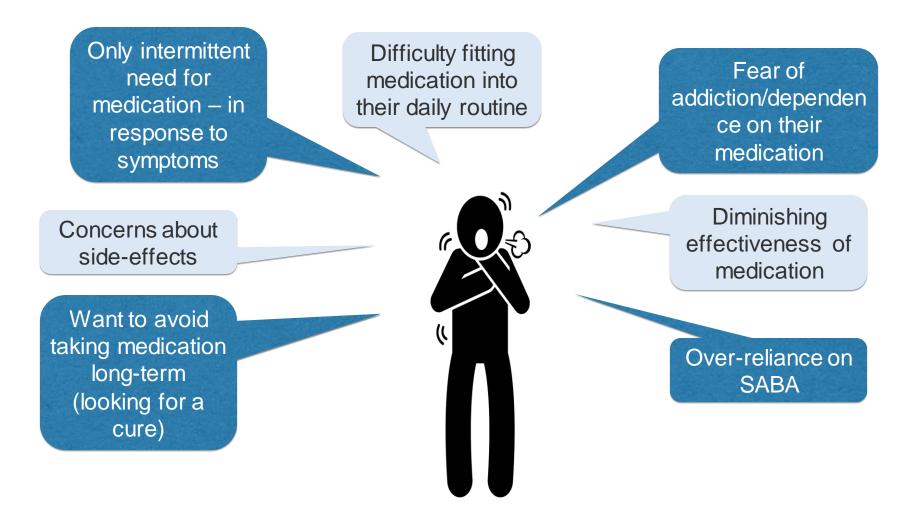
Current smoker


Risk factors chosen based on: OR >1.5, certainty of the effect of the risk factor, ease of use in clinical practice

(1) Nwaru BI et al. ERJ, 2020; 55(4).

© 2021 Canadian

SABA: short-acting beta-agonist; ICS: inhaled corticosteroids; bud/form: budesonide-formoterol in a single inhaler; ED: emergency department


Mild asthma management

- Education, Action Plan and Self-Management

Essential component of management

- Reduction
 - Hospitalizations
 - Emergency visits
 - Urgent physician visits
 - Missed days at work or school
 - Days of restricted activity
- Improvement in pulmonary function
- Non-compliance with medication is common
 - Assessing individual barriers with patients is important

My patient isn't taking her/his inhalers....

Components of an asthma education program

- 1. Written action plan: Provision and explanation of a written action plan comprising:
 - How and how often to assess asthma control (self-monitoring)
 - Instructions to maintain good control using controller medication and making specific environmental changes
 - Signs and symptoms indicating uncontrolled asthma, with instructions on what to do during loss of control (medication to add or increase, how much and how long; when and how to seek additional help (eg, when to go to the hospital or call the health care provider)
- 2. What is asthma? A chronic inflammatory condition in which airways are hyper-reactive (sensitive) to environmental (allergenic, irritants or infectious) and/or intrinsic factors
- 3. Asthma control for all patients: Asthma can be controlled and all patients with asthma can lead a normal life. Regular symptoms and asthma exacerbations indicate treatment failure
- 4. Reliever versus controller: The difference between reliever and controller medications and their use in the written action plan
- 5. Identify triggers: Identification and avoidance of environmental triggers specific to the patients
- 6. Inhaler technique: Teaching and verification of the inhalation technique specific to the inhalation devices prescribed for the patient
- 7. Medication safety and side effects: Expected onset of action and potential side effects of medications

Carbon footprint of inhalers

House of Commons Environmental Audit Committee

UK Progress on reducing F-gas Emissions

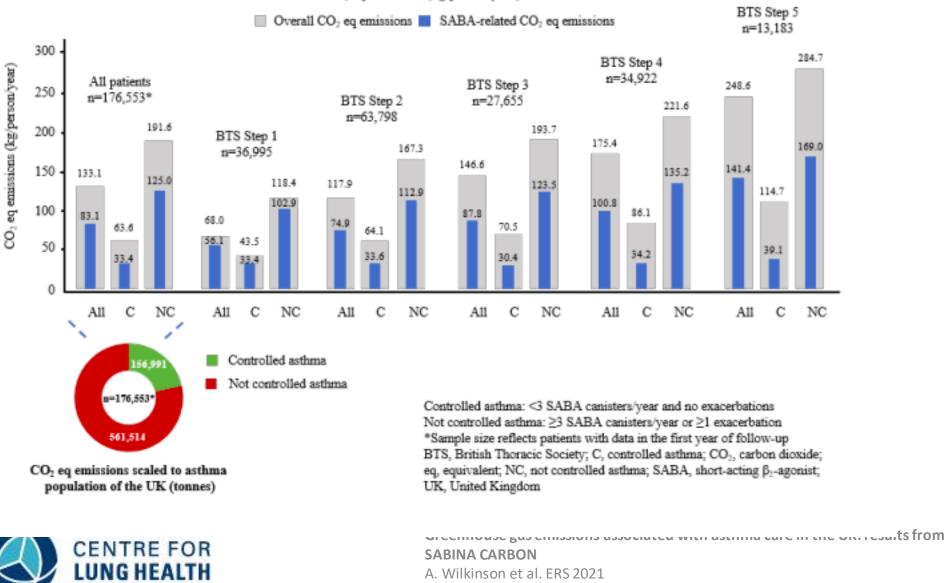
Fifth Report of Session 2017–19

Report, together with formal minutes relating to the report

Ordered by the House of Commons to be printed 18 April 2018

Contents

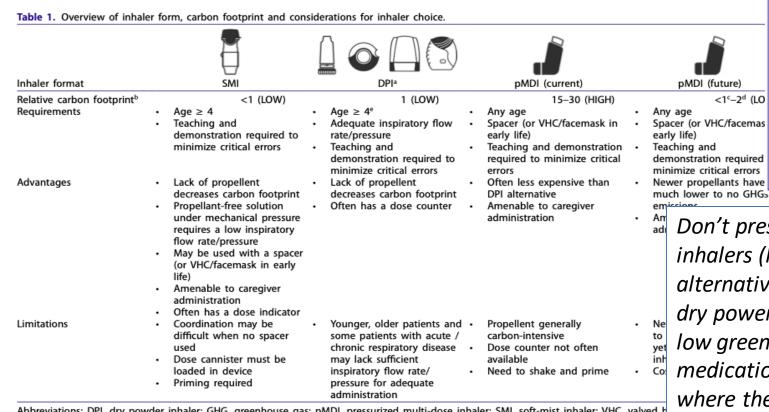
Su	mmary	3
1	Introduction	5
	What are F-gases and why do they matter?	5
	F-gases and Climate Change	6
	What action is being taken to address F-gases?	7
	EU action on F-gases	7
	International action on F-gases	9
	The Work of the Committee	11
2	Progress on reducing F-gases	12
	Progress in hitting the EU's HFC Quota	12
	F-gases, the UK Carbon Budgets and Green House Gas Emissions	14
	Specific examples where the Government could make more progress	15
	Metered Dose Inhalers (MDIs)	15
	Heat Pumps and HFCs	18
	Government Procurement and F-gases: Tracking Progress	19
3	Enforcement of F-gas Regulations and the MAC Directive	20
	Non-Compliance and resourcing of the current F-gas Regime in the UK	20
	Introducing civil penalties for F-gas breaches	21
	Inconsistencies in who can handle F-gases	22
4	The Impact of leaving the EU on the UK's F-gas Regime	24
	Options for regulating F-gases after the UK leaves the UK	24
	Replacing EU regulatory and oversight bodies if the UK leaves the EU's regulatory regime	25
	F-gases and Trade Deals	27
	Leaving the EU and Devolution	28
	The UK and International Environmental Agreements	30
Со	nclusions and recommendations	32


In UK, 70% MDI, 30% DPI

- Some inhalers release greenhouse gases linked to global
 - gas hydrofluoroalkane (HFA) ; (Global Warming Potential)
 - Mainly HFA 134a as propellant, which has a GWP of 1,480,
 - minority use HFA 227, which has a GWP of 2,800
- In UK, MDI account for nearly 4% of NHS greenhouse gas
- Replacing 1 in every 10 of MDI inhalers with a more environmentally friendly type (dry powder inhalers)
 - Reduction in carbon dioxide equivalent emissions by 58 kilotonnes (similar to the carbon footprint of 180,000 return car journeys from London to Edinburgh; 666km x2)
- Making the swap would have as big an "eco" impact as turning vegetarian or becoming an avid recycler
- At the individual level, each MDI replaced by DPI could save the equivalent of between 150kg and 400kg (63 stone) of carbon dioxide a year - similar to the carbon footprint reduction of cutting meat from your diet.

l aerosol inhaler, depending on the type, can have the same carbon footprint as driving up to **170km** in a

gas car.


Fig 1. Annual greenhouse gas emissions associated with asthma care in the UK

CO2 eq emissions (kg/person/year)

Canadian Thoracic Society Position Statement on Climate Change and Choice of Inhalers for Patients with Respiratory Disease

Samir Gupta^{a,b} (b), Simon Couillard^c (b), Geneviève Digby^d (b), Sze Man Tse^{e,f} (b), Samantha Green^g (b), Raymond Aceron^h, Chris Carlstenⁱ, Jill Hubick^j and Erika Penz^k (b)

Abbreviations: DPI, dry powder inhaler; GHG, greenhouse gas; pMDI, pressurized multi-dose inhaler; SMI, soft-mist inhaler; VHC, valved ^aOther DPI devices include: respiclickTM, inhubTM, genuairTM, aerolizerTM, handihalerTM

^bFor specific inhaler carbon footprint estimations, see PrescQIPP resource: https://www.prescqipp.info/our-resources/bulletins/bulletin-295 ^cRelative estimate for HFO-1234ze molecule.¹⁴

dRelative estimate for HFA-152a molecule.67

^eDPI devices are approved for children aged \geq 4 years but preschool aged children may not be able to consistently achieve adequate pressures, nor form a tight seal around the mouthpiece of the device and require extensive teaching and verification.

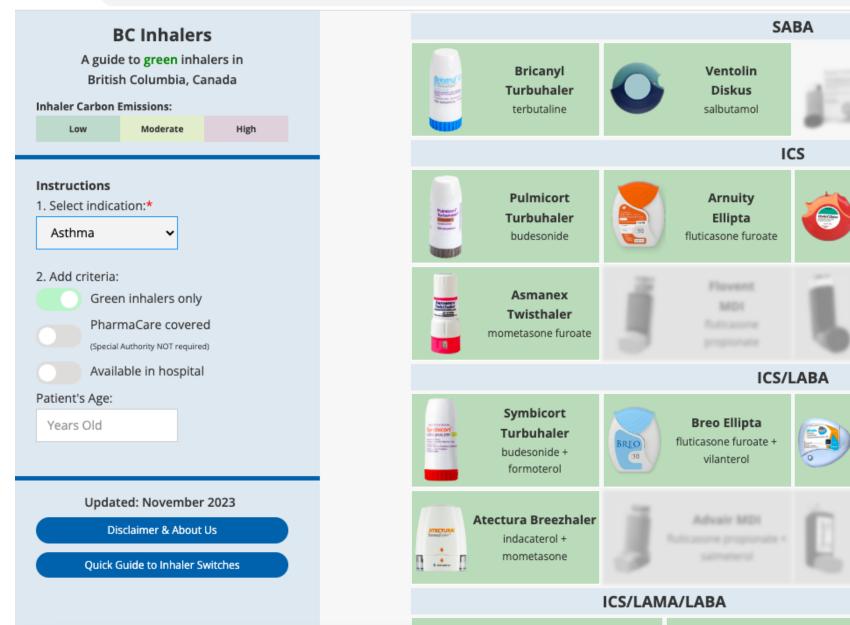
Note. Inhaler images in Table 1 are from the Electronic Asthma Management System (eAMS), reproduced with permission from Dr. Samir Gupta.

Box 1. Practical considerations when selecting an inhaler device.

- Patient preference
- · Impact of inhaler device on adherence
- Inhalation technique (patient ability)
- Inspiratory flow rate/pressure required for adequate medication delivery (patient ability)
- Patient age
- Cost for patient and/or public healthcare system
- Side effect profile
- Environmental footprint

And Don't prescribe greenhouse gas-intensive metered-dose inhalers (MDIs) for asthma and/or COPD where an alternative inhaler with a lower carbon footprint (e.g. dry power inhaler (DPI), soft-mist inhaler, or MDI with a low greenhouse gas potential propellant) containing medications with comparable efficacy is available, and where the patient has demonstrated adequate technique and patient preference has been considered.

> CANADIAN JOURNAL OF RESPIRATORY, CRITICAL CARE, AND SLEEP MEDICINE 2023, VOL. 7, NO. 5, 232–239 https://doi.org/10.1080/24745332.2023.2254283


What we can do as HCP for the environment

- Awareness of carbon footprint of inhalers
 - Choice of dry powder over metered dose inhaler
- Aim for good asthma control
 - Acceptable asthma control (< 3 SABA cannister/year) is one third of uncontrolled asthma (> = 3 SABA cannister/y or 1 exacerbation)
 - Severe asthma exacerbation increased the Carbon footprint via use of ambulance, car, ER visits and hospitalisations.
 - Reduction in CO2 emission by prevention severe exacerbation equal to use a low carbon DPI (Breezhaler[®]) for ~74 patient years.

Wilkinson et al. ERS 2021 Beeh et al. ERS 2021

$\leftarrow \rightarrow$ C \cong bcinhalers.ca

Trelegy

🖞 🚖 🌲 🛃 🖸 😋 🤇 Relaunch to up

Aermony

Respiclick

fluticasone

propionate

Quar

Advair Diskus

fluticasone

propionate +

salmeterol

Teva-Salbutamol

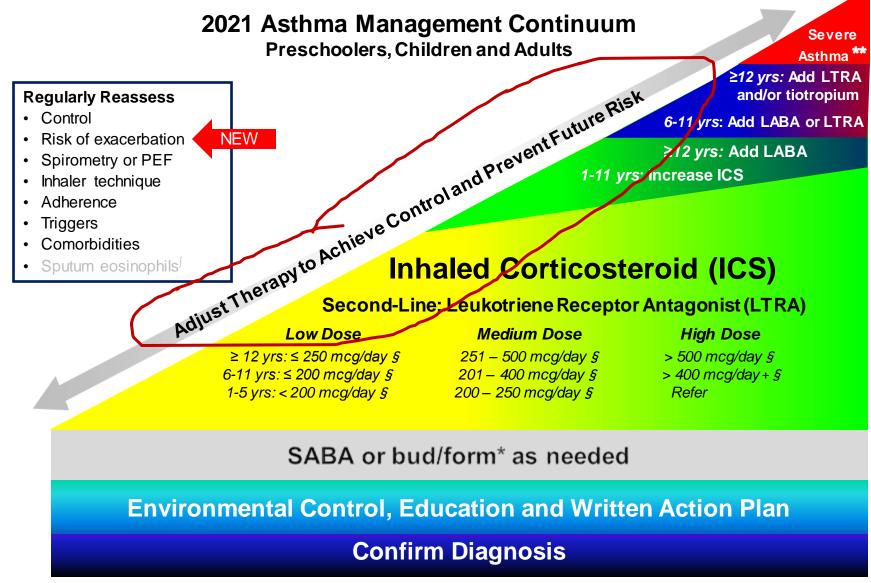
Flovent Diskus

fluticasone

propionate

Abvenco

MON.


Wixela Inhub

fluticasone propionate +

salmeterol

Zanhala MDI

Enerzair

- * Or an alternative ICS/form preparation if another is approved for use as a reliever in the future. Bud/form is approved as a reliever for ≥12 years of age and should only be used as a reliever in individuals using it as monotherapy or in conjunction with bud/form maintenance therapy
- **§** HFA Fluticas one propionate or equivalent
- + Not approved for use in Canada
- In adults, 18 years old and over with moderate to severe as thma assessed in specialist centres
- ** For severe asthma refer to CTS 2017 Recognition and management of Severe Asthma Position Statement

Mild asthma

- Control to optimize
 - Symptoms control and risk reduction
- Education
- Risks factors: prior severe exacerbation, poorly control, overuse SABA, smoker
- ICS/formoterol as needed
- Low carbon footprint inhalers

Why is GINA Track 1 with ICS-formoterol preferred?

- Steps 1–2: weight of evidence for effectiveness and safety compared with SABA alone, or low-dose ICS plus as-needed SABA (4x12 month studies, n~10,000) (Crossingham et al, Cochrane 2021)
 § As-needed ICS-SABA: only one 6-month RCT (n=455) (Papi et al, NEJMed 2007)
- Steps 3–5: weight of evidence for effectiveness and safety of MART versus regimens with as-needed SABA (n~30,000) (Sobieraj et al, JAMA 2018; Cates et al, Cochrane 2013)
 - § As-needed ICS-SABA: only one RCT (n=3,132) vs as-needed SABA (*Papi et al, NEJMed 2022*); cannot be used for maintenance and reliever therapy
- Both the ICS and the formoterol contribute to reduction in severe exacerbations (*Tattersfield et al, Lancet 2001; Pauwels et al, ERJ 2003; Rabe et al, Lancet 2006*)
 - § Safety established up to total 12 inhalations in any day, in large studies
- Simplicity of approach for patients and clinicians
 - § A single medication for both symptom relief and maintenance treatment (if needed) from diagnosis
 - § Avoids confusion about inhaler technique with different devices
 - § Short-term increase in symptoms à patient increases the number of **as-needed** doses
 - § Step treatment down or up by changing the number of maintenance doses

Reliever doses of ICS-formoterol - how much can be taken?

- For ICS-formoterol with 6 mcg (4.5 mcg delivered dose) of formoterol, take 1 inhalation whenever needed for symptom relief
- Another inhalation can be taken after a few minutes if needed
- Maximum total number of inhalations in any single day (as-needed + maintenance)
 - § **Budesonide-formoterol**: maximum 12 inhalations* for adults, 8 inhalations for children, based on extensive safety data (*Tattersfield et al, Lancet 2001; Pauwels et al, ERJ 2003*)
 - § Beclometasone-formoterol: maximum total 8 inhalations in any day (Papi et al, Lancet Respir Med 2013)
- Emphasize that most patients need far fewer doses than this!
- For pMDIs containing 3 mcg formoterol (2.25 mcg delivered dose), take 2 inhalations each time

*For budesonide-formoterol 200/6 [delivered dose 160/4.5 mcg], 12 inhalations gives 72 mcg formoterol (54 mcg delivered dose)

Practical advice for GINA Track 1

- n At first, patients may be unsure whether ICS-formoterol will work as well as their previous SABA reliever
 - § In the PRACTICAL study, 69% patients said ICS-formoterol worked as fast as, or faster than, their previous SABA (Baggott et al, ERJ 2020)
 - § Suggest to the patient that they try out the new reliever at a convenient time
 - § Emphasise that they should use the ICS-formoterol **instead of** their previous SABA, and that they should take an additional inhalation when they have more symptoms
- Advise patients to have two inhalers (if possible), 1 at home, 1 in bag/pocket
- Advise patients to rinse and spit out after maintenance doses, but this is not needed with reliever doses
 - § No increased incidence of candidiasis in RCTs with this recommendation (n~40,000)
- I Use an action plan customised to MART
 - § The patient continues their usual maintenance ICS-formoterol inhalations, but takes more **as-needed** ICS-formoterol inhalations
 - § Taking extra as-needed inhalations reduces the risk of progressing to a severe exacerbation needing oral corticosteroids (*Bousquet et al, Respir Med 2007; Buhl et al, Respir Res 2012; O'Byrne et al, Lancet Respir Med 2021*)
- n Additional practical advice for MART (Reddel et al, JACI in Practice 2022)

Moderate to severe asthma management

Objective 2

Asthma

≥12 yrs: Add LTRA and/or tiotropium

6-11 yrs: Add LABA or LTRA

2021 Asthma Management Continuum

Preschoolers, Children and Adults

≥12 yrs: Add LABA 1-11 yrs: Increase ICS

Adjust Therapy to Achieve Control and Prevent Future Risk Inhaled Corticosteroid (ICS)

Second-Line: Leukotriene Receptor Antagonist (LTRA)

\geq 12 yrs: \leq 250 mcg/day §

6-11 yrs: ≤ 200 mcg/day §

1-5 yrs: < 200 mcg/day §

251 – 500 mcg/day §

201 – 400 mcg/day § 200 – 250 mcg/day §

High Dose > 500 mcg/day § > 400 mcg/day + § Refer

SABA or bud/form* as needed

Environmental Control, Education and Written Action Plan

Confirm Diagnosis

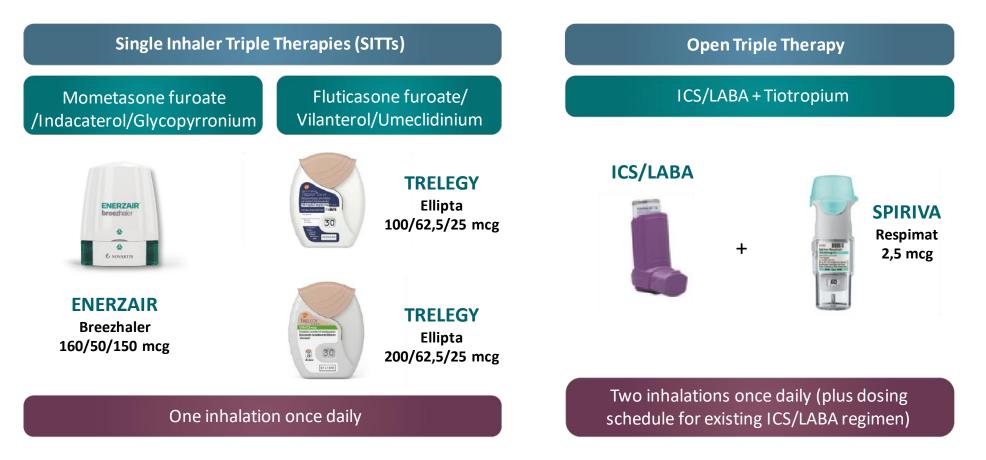
* Or an alternative ICS/form preparation if another is approved for use as a reliever in the future. Bud/form is approved as a reliever for >12 years of age and should only be used as a reliever in individuals using it as monotherapy or in conjunction with bud/form maintenance therapy

§ HFA Fluticasone propionate or equivalent

+ Not approved for use in Canada

In adults, 18 years old and over with moderate to severe asthma assessed in specialist centres

For severe asthma refer to CTS 2017 Recognition and management of Severe Asthma Position Statement


Reference: Connie L. Yang, Elizabeth Anne Hicks, Patrick Mitchell, Joe Reisman, Delanya Podgers, Kathleen M. Hayward, Mark Waite & Clare D. Ramsey (2021): Canadian Thoracic Society 2021 Guideline update: Diagnosis and management of asthma in preschoolers.

children and adults. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine,

ICS/LABA options

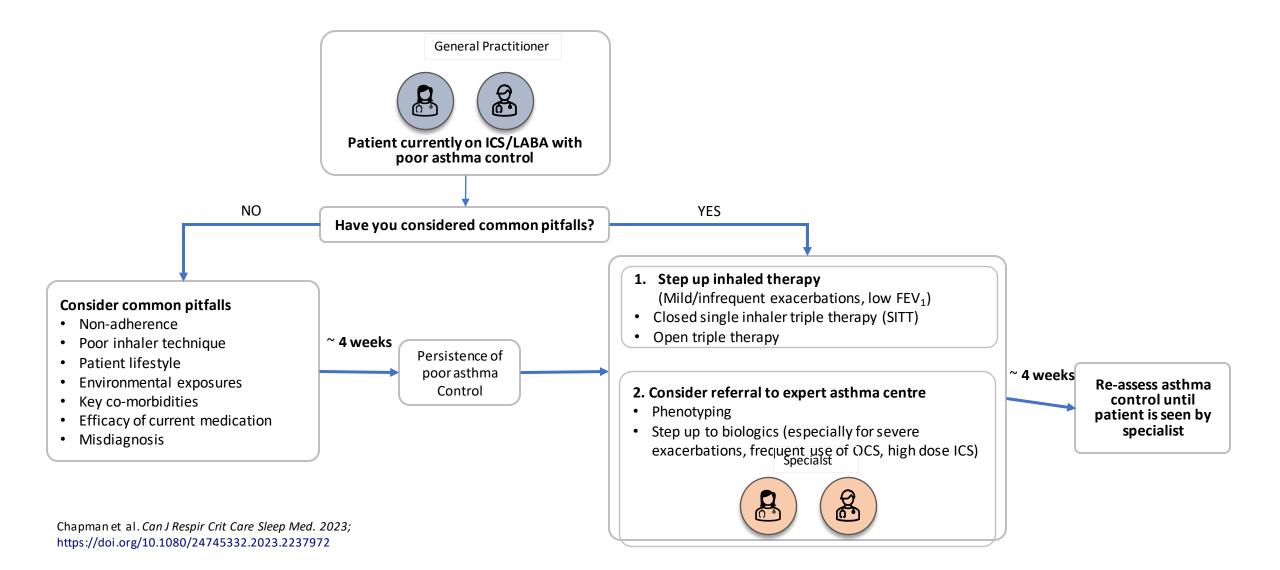
Inhaled Respiratory Medication for Patients with Poor Asthma Control treated with ICS/LABA

There are two closed SITTs and one open triple therapy available in Canada.

CANADIAN JOURNAL OF RESPIRATORY, CRITICAL CARE, AND SLEEP MEDICINE https://doi.org/10.1080/24745332.2023.2237972

CLINICAL RESPIRATORY REVIEW

Check for updates


∂ OPEN ACCESS

Triple inhaled therapy for asthma in Canada

Kenneth R. Chapman^a (b), Meyer Balter^b, Sacha Bhinder^c, Alan Kaplan^d, Andrew McIvor^e, Panayiota Papadopoulos^f and Krystelle Godbout^g

^aAsthma & Airway Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; ^bAsthma Education Clinic, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; ^cDepartment of Medicine, Division of Respirology, Scarborough Health Network, Scarborough, Ontario, Canada; ^dDepartment of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada; ^eFirestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Ontario, Canada; ^fValeo Pharma Inc, Kirkland, Québec, Canada; ^gInstitut de Cardiologie et Pneumologie de Québec, Université de Laval, Québec City, Québec, Canada

Schematic to assist decisions to initiate triple inhaled therapy

Potential advantages and disadvantages of open and closed triple inhaled therapies

Open triple therapy

Closed triple therapy

Advantages

 Flexibility of dosing
 Compatible with ICS/LABA use for both maintenance and symptom relief

Disadvantages

- Reduced adherence, including discontinuation of maintenance therapy

- Need for multiple inhalers - Inhaler technique errors

Advantages

- Prevents exacerbations

- Improves lung function in patients with fixed airway limitation

- Improves small airway dysfunction
- Reduces cholinergic neuroplasticity
- Decreases neutrophilic airway inflammation

Reduces mucus hypersecretion

Advantages

- Improved adherence

- Reduced frequency and severity of exacerbations

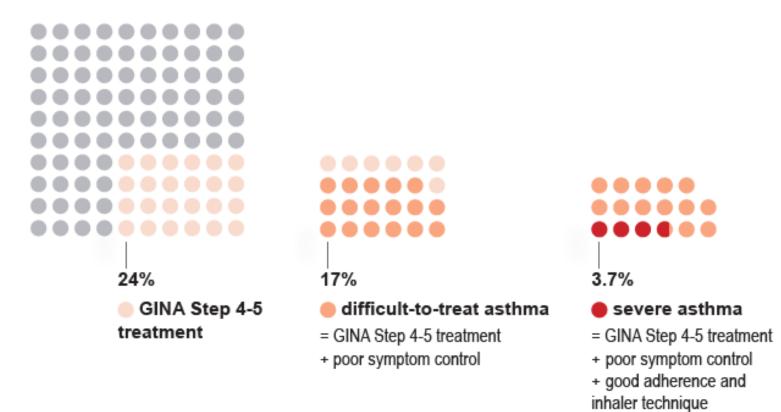
- Reduced healthcare costs
- Only one maintenance inhaler needed

- Reduced landfill

- Gas-free delivery

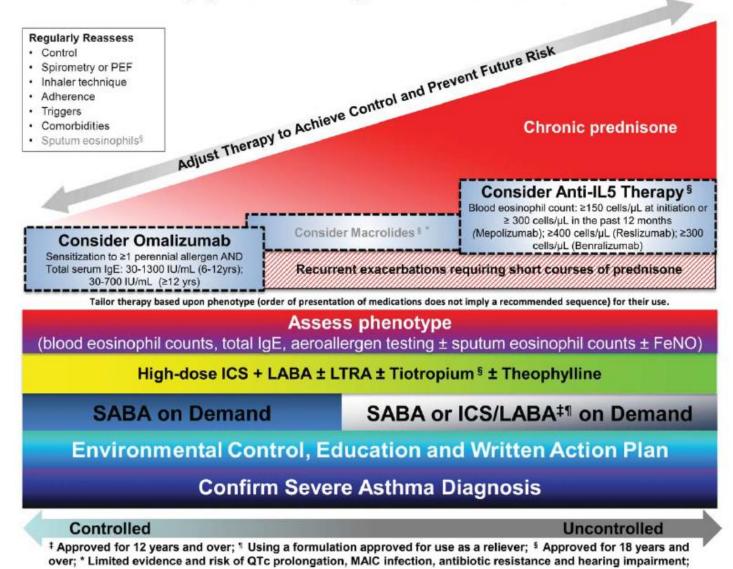
- Compatible with ICS/LABA use for symptom relief

Disadvantages


- Limited capacity for treatment flexibility

Chapman et al. *Can J Respir Crit Care Sleep Med. 2023;* https://doi.org/10.1080/24745332.2023.2237972

How common is severe asthma?

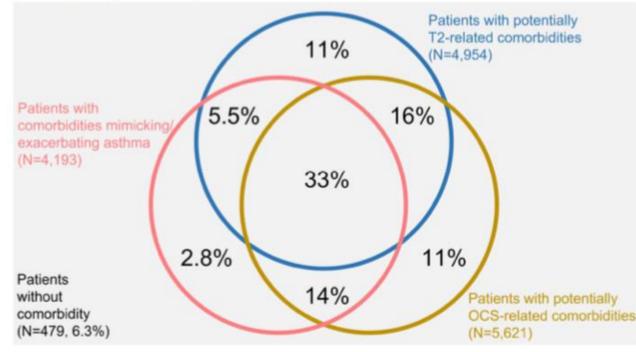


Box 1. What proportion of adults have difficult-to-treat or severe asthma?

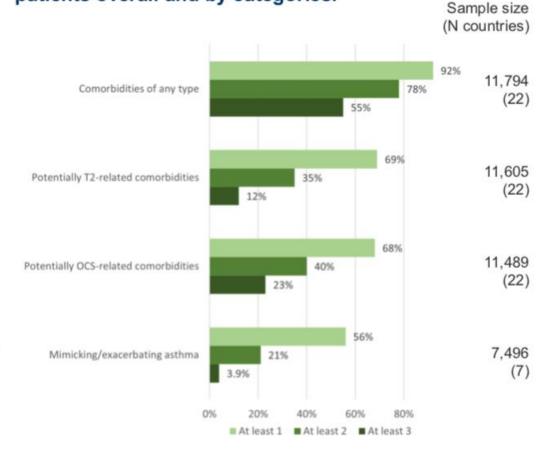
These data are from a Dutch population survey of people ≥18 years with asthma²

2017 Severe Asthma Management Continuum Children (6 years and over), Adolescents and Adults

Fitzgerald et al. CANADIAN JOURNAL OF RESPIRATORY, CRITICAL CARE, AND SLEEP MEDICINE 2017, VOL. 1, NO. 4, 199–221



Prevalence of Comorbidities in Adults with Severe Asthma: Results from the International Severe Asthma Registry (ISAR)G. Scelo et al. ATS 2022


Table. Prevalence of 33 comorbid conditions in adul Inter Potentially oral corticosteroid (OCS)-related	ts with severe as	strima enrolled in t	the	
coun Obesity	44%	4 646	10 715	
Come	22%	2 176	9 729	
Sleep apnea	21%	2 078	9 698	
Dyslipidemia	18%	1 109	6 280	176
Diabetes	11%	1 048	9 801	176
Coronary heart disease	9.5%	777	8 160	176
Alleri Pneumonia	9.0%	815	9 0 9 1	826
Chro Osteoporosis	7.1%	708	9 922	
Nasa Pulmonary embolism/venous thromboembolism	n 2.8%	246	8 867) 121
czer Cataract	2.2%	201	8 981) 119
Jrtic Peptic ulcer	2.2%	183	8 330	064
ood Renal failure	1.7%	157	9 031	
Alleri Glaucoma	1.4%	129	8 975	
Aller, Adrenal insufficiency	1.4%	82	5 765	leve
Eosin Cerebrovascular accident	0.71%	58	8 152	
Aspirin sensitivity	0.96%	62	6 4 6 4	
Eosinophilic esophagitis	0.65%	33	5 064	

Comorbidities-ISAR PRISM

Figure 1. Co-occurrence of comorbidities across three categories in patients with complete data (N=7,561 patients; 7 countries).

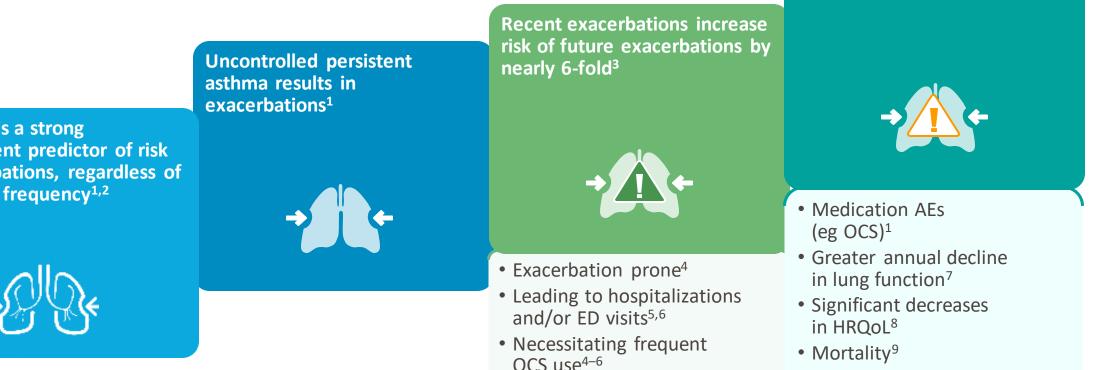
Figure 2. For those with data on at least 3 comorbidities of any type, number of comorbidities reported in ISAR patients overall and by categories.

ATS 2022

Optimisation of severe asthma control

- Reduction of exacerbations
- Limit OCS exposure
- Optimize lung function

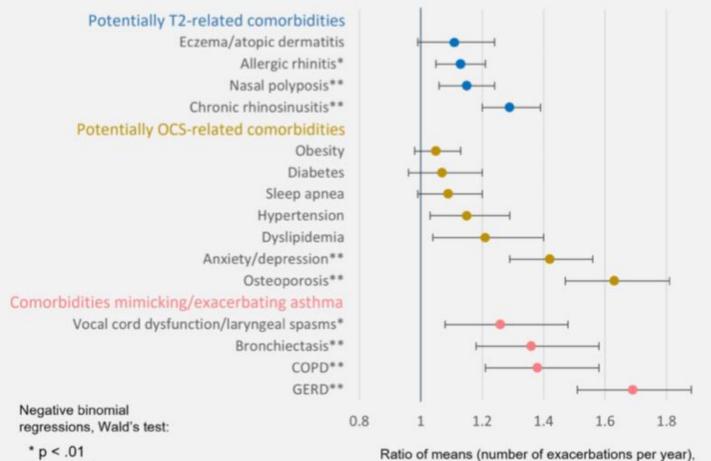
Reduction in mortality


- **Comorbidities** are highly prevalent and need to be treated
 - T2 related
 - OCS related
 - Mimicking/exacerbating asthma

Risk factors of exacerbations and mortality in adult asthma

Objective 4

Uncontrolled Asthma Poses a Cumulative Burden on Patients


Frequent exacerbations lead to

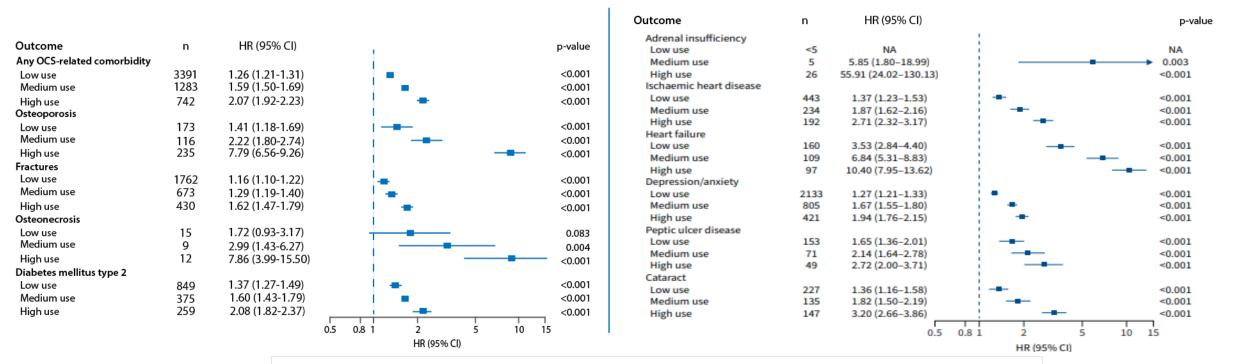
long-term complications

AE, adverse event; ED, emergency department; FEV₁, forced expiratory volume in 1 second; HRQoL, health-related quality of life 1. GINA. Pocket guide for asthma management and prevention. 2019. Available at: https://ginasthma.org/wp-content/uploads/2019/04/GINA-2019-main-Pocket-Guide-wms.pdf. Accessed June 2019; 2. Khan A, et al. Ann Allergy Asthma Immunol. 2018;121:S44. Abstract no. P220; 3. Miller MW, et al. Respir Med. 2007;101:481–489; 4. Dougherty RH, et al. Clin Exp Allergy. 2009;39:193–202; 5. Haselkorn T, et al. J Allergy Clin Immunol. 2009;124:895–902; 6. Pola-Bibian B, et al. J Investig Allergol Clin Immunol. 2017;27:238-245; 7. Bai TR, et al. Eur Respir J. 2007;30:452-456; 8. Lee LK, et al. J Asthma. 2018;55:208-219; 9. Sears M. J Allergy Clin Immunol. 2008;122:662-668

Low FEV₁ is a strong independent predictor of risk of exacerbations, regardless of symptom frequency^{1,2}

Figure 3. Association between comorbidities and exacerbation rates at enrolment.

** p < .001

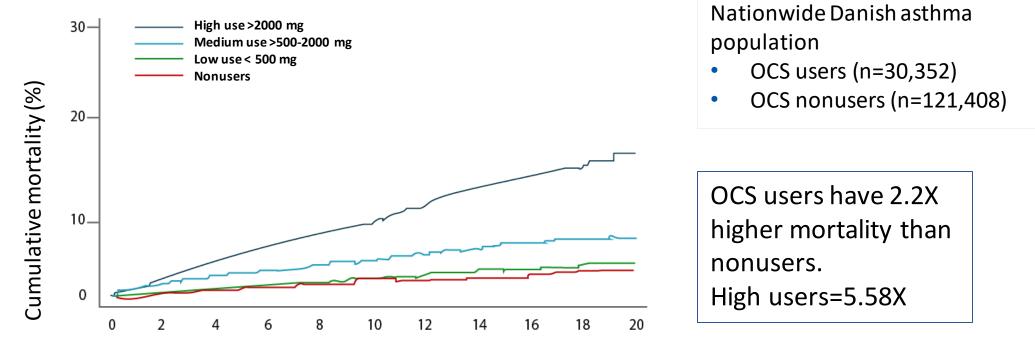

Ratio of means (number of exacerbations per year) adjusted for age at enrolment and country

Note: Pre-biologic exacerbation rates for patients undergoing biologic therapy.

Oral Corticosteroid (OCS) Use Associated with Increased Risk

of Comorbidities among Adults with Asthma

- Danish registers during 1999–2018 and followed prospectively in an open-cohort design
- Even at low cumulative exposure over the course of 20 years, OCS use was associated with increased risk of comorbidities, mortality and unscheduled hospital visits



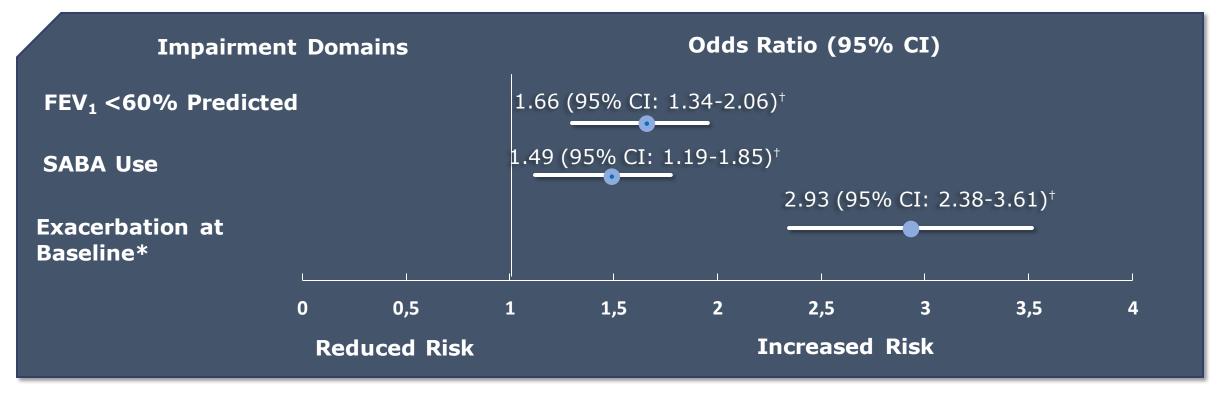
Use stratified: low use ≤500 mg, medium use >500–2000 mg and high use >2000 mg)

Reducing the need for OCS use is pivotal in asthma management.

Skov IR, et al. Eur Respir J 2022; 60: 2103054

Twenty-Year Cumulative OCS Use Associated with increased Risk of Mortality among Adults with Asthma

At risk (n):

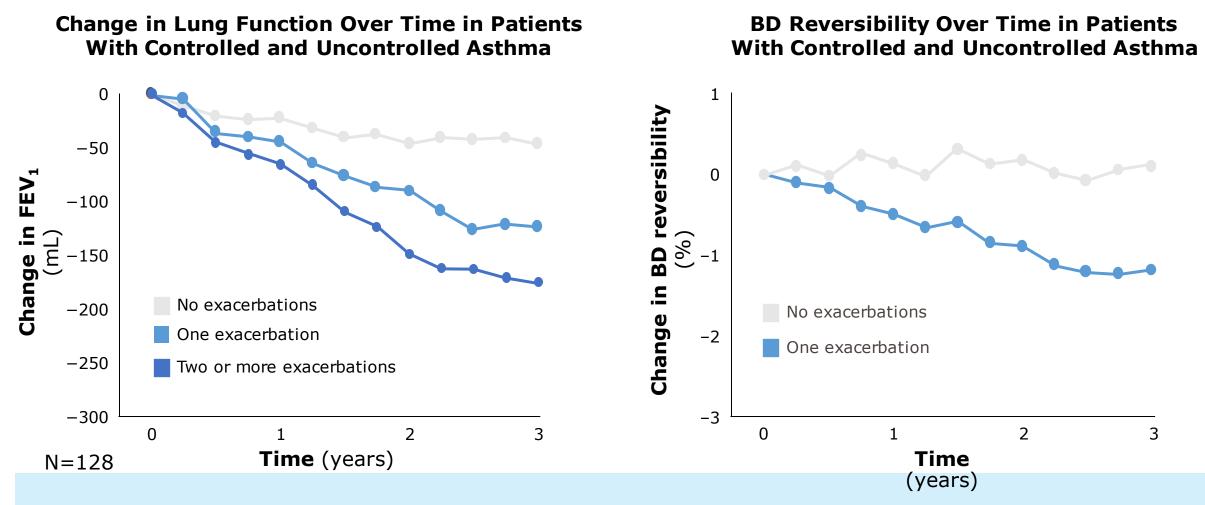

Nonusers Low use < 500 mgMedium use >500-2000 mg 980 High use >2000 mg

Causes of mortality: respiratory specific (1/3), mostly dying from comorbid conditions/treatment side effects (CVD (20%), endo, neuro, mental disorders)

Skov IR, et al. Eur Respir J 2022; 60: 2103054; OCS: oral corticosteroids

Poor Lung Function Is a Significant Predictor of Future Severe Asthma Exacerbations

Predictor of Severe Exacerbation Risk at Month 12 in Patients Aged ≥12 Years With Severe or Difficult-to-Treat Asthma From TENOR Study (N=2,094)

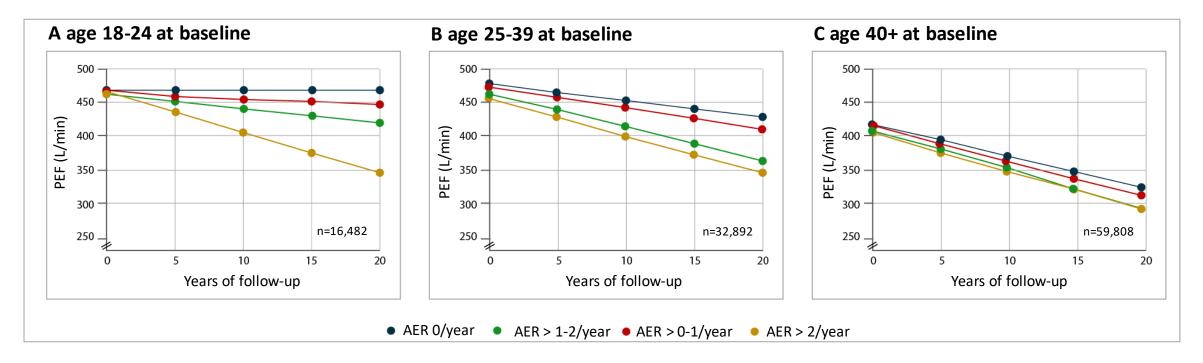


CI=confidence interval; FEV₁=forced expiratory volume in 1 second; SABA=short-acting beta-agonist.

*Defined as a hospitalization, emergency department visit, or a course of corticosteroids at 12 months. ⁺P<0.001

Data from analysis included patients from TENOR study with baseline and month 12 study visits and those with complete baseline data to classify asthma control based on the impairment domain of the 2007 NHLBI guidelines.

Asthma Exacerbations Correlate With Progression of Irreversible Airflow Limitation



BD=bronchodilator; FEV1=forced expiratory volume in 1 second.

Reprinted from The Journal of Allergy and Clinical Immunology: In Practice, volume 3/issue 5, Matsunaga K, et al. Progression of Irreversible Airflow Limitation in Asthma: Correlation with Severe Exacerbations, pp 759-764.e1. Copyright © 2015, with permission from Elsevier.

Exacerbations defined as events outside the patient's usual range of day-to-day asthma variation, requiring a change in controller therapy.

Asthma Exacerbations Associated with Faster Lung Function Decline

Adjusted 20-year Peak Expiratory Flow (PEF) Trajectories (L/Year) by Annual Exacerbation Rate (AER) Stratified by Patient Age at Baseline

- This 20-year-long, UK-wide observational study of patients with active asthma managed in primary care demonstrates that asthma exacerbations are associated with faster lung function decline.
- Achieving better control decreases the likelihood of lung function decline in any age.

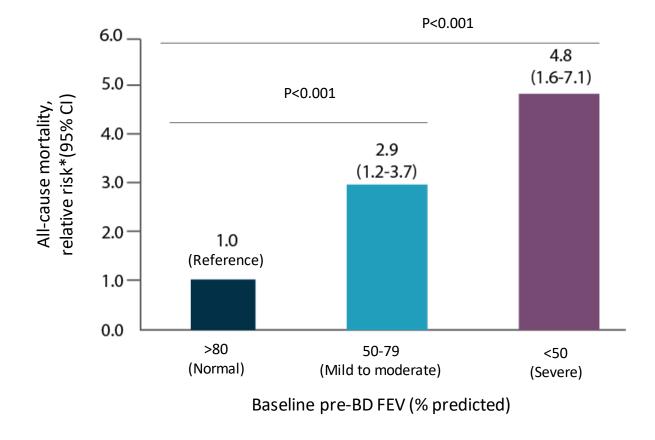
Early identification and intervention of patients with asthma is of value.

Risk factors for asthma exacerbations

a. Risk factors for exacerbations

Uncontrolled asthma symptoms	Having uncontro	lled asthma symptoms is an important risk factor for exacerbations.98
	Medications	High SABA use (\geq 3 x 200-dose canisters/year associated with increased risk of exacerbations, increased mortality particularly if \geq 1 canister per month) ^{74,75,99,100}
		Inadequate ICS: not prescribed ICS, poor adherence, ¹⁰¹ or incorrect inhaler technique ¹⁰²
Factors that increase the risk	Other medical conditions	Obesity, ^{103,104} chronic rhinosinusitis, ¹⁰⁴ GERD, ¹⁰⁴ confirmed food allergy, ¹⁰⁵ pregnancy ¹⁰⁶
of exacerbations	Exposures	Smoking, ¹⁰⁷ e-cigarettes, ¹⁰⁸ allergen exposure if sensitized, ¹⁰⁷ air pollution ¹⁰⁹⁻¹¹²
even if the patient has few asthma	Psychosocial	Major psychological or socioeconomic problems ^{113,114}
symptoms†	Lung function	Low FEV1 (especially <60% predicted), ^{107,115} high bronchodilator responsiveness ^{104,116,117}
	Type 2 inflammatory markers	Higher blood eosinophils, ^{104,118,119} elevated FeNO (in adults with allergic asthma taking ICS) ¹²⁰
		Ever intubated or in intensive care unit for asthma, ¹²¹ ≥1 severe exacerbation in last 12 months ^{122,123}

Risk factors for asthma death


Box 4-1. Factors that increase the risk of asthma-related death

- A history of near-fatal asthma requiring intubation and mechanical ventilation⁶³⁶
- Hospitalization^{636,637} or emergency care visit for asthma in the past year
- Currently using or having recently stopped using oral corticosteroids (a marker of event severity)⁶³⁶
- Not currently using inhaled corticosteroids^{101,636}
- Over-use of short-acting beta₂-agonists (SABAs), especially use of more than one canister of salbutamol (or equivalent) monthly^{75,121,638}
- Poor adherence with ICS-containing medications and/or poor adherence with (or lack of) a written asthma action plan¹¹³
- A history of psychiatric disease or psychosocial problems¹¹³
- Food allergy in a patient with asthma^{499,639}
- Several comorbidities including pneumonia, diabetes and arrhythmias were independently associated with an increased risk of death after hospitalization for an asthma exacerbation.⁶³⁷

See list of abbreviations (p.10).

Lung Function Decline is Associated with an Increased Mortality Risk

This 25-year prospective study of adult patients with wellcharacterized asthma showed a significant increase in mortality mainly due to obstructive lung disease in comparison to matched controls.

Variable	RR	95% CI	P Value
Age			<.001
<39 y	1.0		
40-69 y	3.2	1.1 - 5.2	
>70 y	4.8	2.2-6.7	
FEV ₁ % predicted			< .001
>80	1.0		
50-79	2.9	1.2-3.7	
$<\!50$	4.8	1.6 - 7.1	
Reversibility ⁴			<.01
15%-24%	1.0		
25%-49%	3.2	1.4-5.1	
>50%	4.8	1.6 - 7.1	
Acute hospital contacts			.002
No	1.0		
Yes	2.9		
B-eosinophils		1.5 - 3.7	<.0001
<.45 mia/L	1.0		
>.45 mia/L	4.3	2.5-6.6	

RR = relative risk.

"Defined as $(FEV_1after - FEV_1before) \times 100)/FEV_1before$.

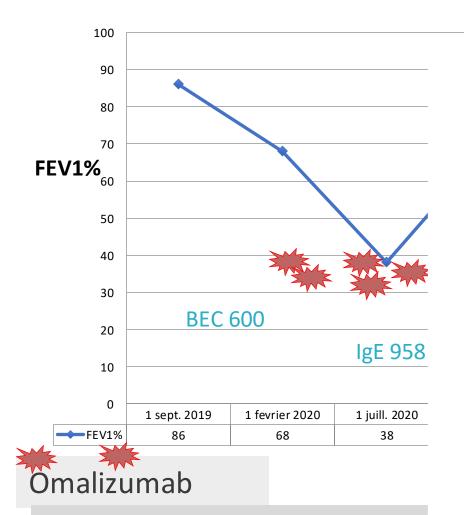
The importance of timely identification and appropriate treatment of patients with asthma is of value.

Therapy for severe asthma -biologics

Objective 3

Beyond inhalers...

		Possible specialised	treatments for uncont	trolled severe asthma		
	Anti-lgE	Anti-IL-5/5R	Anti-IL-4/13	Anti-TSLP	Azithromycin	Bronchial thermoplasty
Eligibility	 Sensitised to perennial allergens, allergen driven disease and Exacerbations or mOCS use 	 Blood eosinophilia (>0.15 or 0.3) and Exacerbations or mOCS use 	B-eos 0·15–1·5, or FeNO >25 ppb and •Exacerbations or • mOCS use	 No phenotype requirements Exacerbations or mOCS use 	• Exacerbations	 Exacerbations mOCS at most 10 mg of prednisolone per day Adults only FEV₁>60%
Possible predictors of good response	• B-eos >0·26 • FeNO >20 ppb • Allergen driven asthma	 Higher blood eosinophils More exacerbations CRSwNP 	 Higher blood eosinophils Higher FeNO CRSwNP 	 Higher blood eosinophils Higher FeNO 	• Colonisation with Haemophilus influenzae	NA
Effective also in	Chronic spontaneous urticaria • CRSwNP	• CRSwNP • EGPA • HES	• CRSwNP • Atopic dermatitis	NA	• Bronchiectasis	NA


Mr. D 66 y-o, mechanic

- Severe asthma
 - Adult onset at age 58 y-o
 - Possible initial trigger: ASA/NSAID
 - No admission, no ICU
- CRS without NP
- Mild atopic dermatitis
- GERD
- OSA on CPAP
- Stroke in 2019
- Ex smoker, 35 p-y, discontinue at age 40
- Allergy: ASA/NSAID causing urticaria

BEC 600 IgE 958 FEV1 38-87% ANCA neg Asp ppt neg Sinus CT: chronic pansinusitis Chest CT: small airway disease

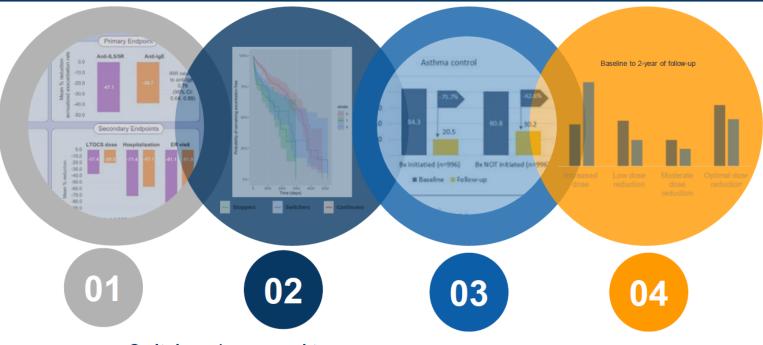
Mr. D- Adult onset eosinophilic/T2

Budesonide/Formoterol + tiotropi

Montelukast, pantoprazole, SR+budeso

Mrs. H – allergic asthma

FEV1%


ACQ 0 FeNO 38

Mepolizumab

Good asthma and CRS control Discontinue Sep 2017 for lightheadness Rapid recurrence of sinus symptoms

Research that impacts clinical practice 2. How biologics can change the trajectory

A need to determine the 'right' biologic when eligible for both

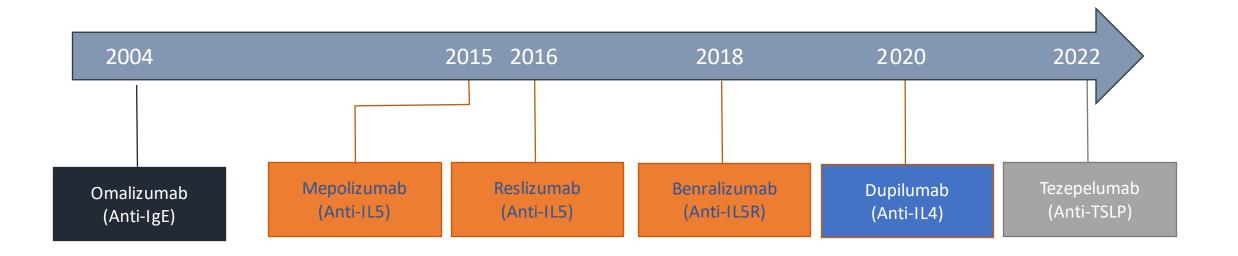
Anti-IL5/5R was superior to anit-IgE in reducing asthma exacerbations and LTOCS use¹ Switchers (compared to continuers) had increased exacerbation rates, a higher LTOCS dose and higher chance of uncontrolled asthma

Receiving and continuing the right biologic leads to better outcomes² Biologics reduce exacerbations, improve asthma control and reduce OCS use in patients with high steroid exposure³

SOLAR:

Continues to examine biologic impact on OCS exposure Asks: will this lower likelihood of OCS

reduce related adverse outcomes?

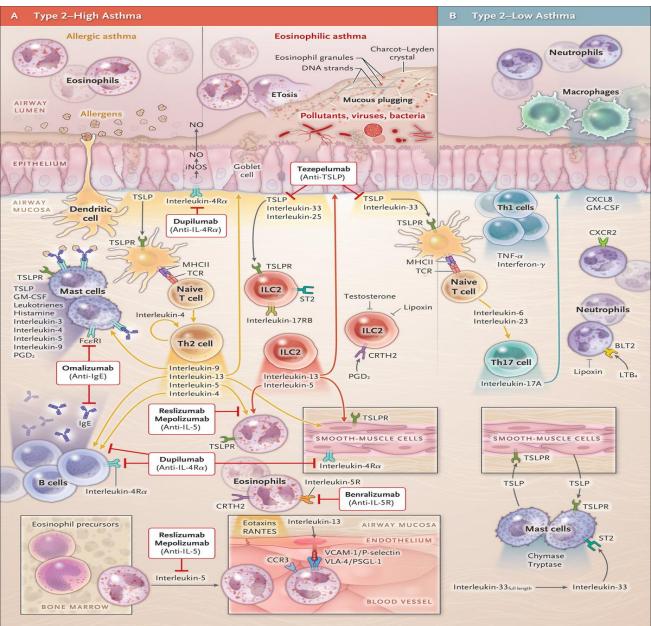

1.FIRE, Comparative effectiveness of Anti-IL5 and Anti-IgE biologic classes in patients with severe asthma eligible for both Pfeffer, P. et al, Allergy. 78. 10.1111/all.15711.

2.CLEAR, clinical outcomes and emergency health care utilization in patients with severe asthma who continued, switched or stopped biologic therapy, Ali N et al. Allergy and Airway 2022;162(4) Suppl A28-32; doi: 10.1016/j.chest.2022.08

3. GLITTER II, Impact of initiating biologics in patients with severe asthma on long term or frequent rescue steroids, Chen W et al. J Allergy Clin Immunol Pract 2023, available online June 8 2023

LTOCS: Long Term Oral Corticosteroids, OCS: Oral Corticosteroids, Anti-IL5/5R: Anti- Interleukin 5/5R

Timeline of approvals for biologics for severe asthma in Canada



All categories accessible under Pharmacare

REVIEW ARTICLE

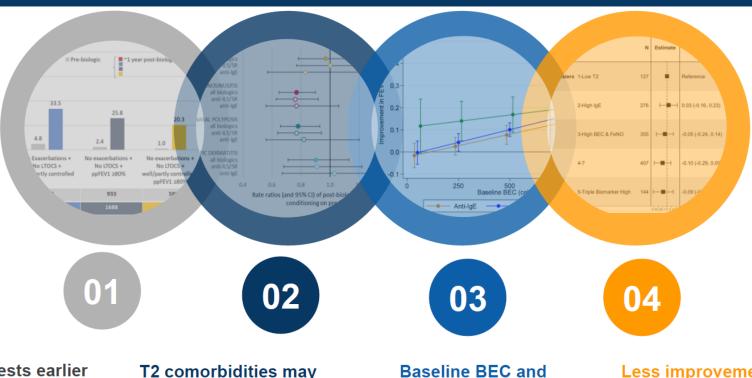
Biologic Therapies for Severe Asthma

Guy G. Brusselle, M.D., Ph.D., and Gerard H. Koppelman, M.D., Ph.D.

January 13, 2022 N Engl J Med 2022; 386:157-171 DOI: 10.1056/NEJMra2032506

Biologic Agent (Therapeutic Target and Mechanism of Action)	Route of Administration and Dose†	Forms	Indication	Patient Yr of Age†	Efficacy	Safety Concerns
Benralizumab (interleukin-5Rα; antibody binds to interleukin- 5Rα on eosinophils and basophils, depleting them through antibody-dependent, cell-mediated cytotoxicity)	SC; 30 mg every 4 wk (first 3 doses), followed by 30 mg every 8 wk	Prefilled syringe, autoinjector pen	Severe eosinophilic asthma	≥12 25-60	Reduced exacerbations, re- duced symptoms, small or moderate effect on FEV ₁ ; decrease or with- drawal of OGs if blood eosinophils >150/µl; improved quality of life	Helminthic infections, hypersensitivity reactions, abrupt discontinuation of OGs
Dupilumab (interleukin-4Rα; antibody binds to interleukin- 4Rα, inhibiting interleukin-4 and interleukin-13 signaling in hematopoietic cells [e.g., B cells, CD4+ helper T cells, and eosinophils], epithelial cells, and airway smooth- muscle cells)	Adults and adolescents: SC; initial dose of 400 mg, followed by 200 mg every 2 wk; for glucocorticoid- dependent patients or patients with concomitant moderate-to-severe atopic dermatitis, initial dose of 600 mg, followed by 300 mg every 2 wk Children, ages 6–11 yr: SC; dose depends on body weight‡	Prefilled syringe, autoinjector pen	Severe eosinophilic asthma (FDA), se- vere type 2 asthma (EMA), OG- dependent asthma; other indications: CRS with nasal pol- yposis, moderate- to-severe atopic dermatitis	≥ ⁶ 50-7	Reduced exacerbations, reduced symptoms, improved lung function; decrease or withdrawal of OGs, irrespective of blood eosinophil count at baseline; improved quality of life	Helminthic infections, hypersensitivity reactions, abrupt discontinuation of OGs, hypereosinophilic conditions (e.g., EGPA), conjunctivitis
Mepolizumab (interleukin-5; antibody binds to circulating interleukin-5)	Adults and adolescents: SC; 100 mg every 4 wk Children, ages 6–11 yr: SC; 40 mg every 4 wk	Prefilled syringe, autoinjector pen	Severe eosinophilic asthma; other indications: EGPA, hypereosinophilic syndrome CRSWNP	≥ ⁶ 50%	Reduced exacerbations, re- duced symptoms, small or moderate effect on FEV ₁ ; reduction or with- drawal of OGs if blood eosinophils >150/µl; improved quality of life	Helminthic infections, hypersensitivity reactions, abrupt discontinuation of OGs, herpes zoster infec- tions (rare)
Omalizumab (IgE; antibody binds to Fc part of free IgE, inhibiting binding of IgE to Fc&RI on mast cells and basophils and Fc&RII on den- dritic cells and eosinophils)	SC; 75 to 375 mg every 2 to 4 wk according to body weight and pretreatment level of serum total IgE	Prefilled syringe	Severe allergic asthma; other indication: chronic idiopathic urticaria	≥ ⁶ ~25%	Reduced exacerbations, re- duced symptoms, small effect on FEV ₁ ; improved quality of life	Serum sickness, hypereo- sinophilic conditions (e.g., EGPA), abrupt discontinu- ation of OGs; black-box warning for anaphylaxis (occurring in ±0.2% of patients)
Reslizumab (interleukin-5; antibody binds to circulating interleukin-5)	IV; 3 mg/kg every 4 wk	IV infusion	Severe eosinophilic asthma	≥18 50-60	Reduced exacerbations, re- duced symptoms, small or moderate effect on FEV ₁ ; improved quality of life	Helminthic infections, abrupt discontinuation of OGs; black-box warning for anaphylaxis (occurring in ±0.3% of patients)
Tezepelumab (TSLP)	SC; 210 mg every 4 wk	Prefilled syringe	Severe asthma	≥12 40-719	Reduced exacerbations, re- duced symptoms, improved lung function; improved quality of life	Pharyngitis, arthralgia, back pain

* CRS denotes chronic rhinosinusitis, EGPA eosinophilic granulomatosis with polyangiitis, EMA European Medicines Agency, FceRI high-affinity receptor for the Fc region of IgE, FceRII low-affinity receptor for the Fc region of IgE, FDA Food and Drug Administration, FEV, forced expiratory volume in 1 second, interleukin-4Ra interleukin-4 receptor a, interleukin-5Ra interleukin-5 receptor α , IV intravenous, OGs oral glucocorticoids, SC subcutaneous, and TSLP thymic stromal lymphopoietin.


† Information on dose and age is for patients with severe asthma as the main indication.

‡ For pediatric patients, ages 6 to 11 yr, with a body weight of 15 kg to less than 30 kg, the recommended dose of dupilumab is 100 mg every 2 wk or 300 mg every 4 wk; for children with a body weight of 30 kg or more, the dose is 200 mg every 2 wk.

January 13, 2022 N Engl J Med 2022; 386:157-171 DOI: 10.1056/NEJMra2032506

Biologics	Indications in Canada	Formulations available
Omalizumab (Xolair) \$8,137-\$48,824/year depending on dose	Allergic asthma either moderate or severe – has one or more of the following: Asthma symptoms every day Daily need for a rescue inhaler 2 or more asthma attacks a week 1 or more nights a week waking up with asthma symptoms Below normal readings (less than 80%) peak flows IgE level must be between 72-1680mcg/L Positive skin prick test or in vitro reactivity allergen test results	Subcu: vial, pre-filled
Mepolizumab (Nucala) \$25,269/year	severe eosinophilic asthma - inadequately controlled with high-dose corticosteroids and an additional asthma controller (<i>e.g. long acting beta</i> ₂ -adrenergic agonist (LABA) blood eosinophils count ≥ 0.15GI/L at initiation of treatment and on maintenance OCS for > 6 months OR blood eosinophils count ≥ 0.3GI/L in the previous 12 months + ≥ 2 exacerbations in the previous 12 months	Subcu: vial, pre-filled, auto- injector
Benralizumab (Fasenra) \$31,015 for the first year and then \$25,200 for subsequent years	<pre>severe eosinophilic asthma and is 18 years or older on maintenance add on treatment blood eosinophil count ≥ 0.3GI/L and experienced ≥ 2 clinically significant exacerbations in the past 12 months or blood eosinophil count ≥ 0.15GI/L and treated chronically with OCS</pre>	Subcu: vial or pre-filled
Reslizumab (Cinqair) \$8,349-\$33,394/year	<pre>severe eosinophilic asthma and is 18 years or older inadequately controlled with medium to high dose of inhaled corticosteroids and an additional asthma controller(s) (e.g. LABA) blood eosinophil level count of ≥ 0.4 GI/L at initiation of treatment</pre>	IV
Dupilumab (Dupixent) \$25,000/year	severe eosinophilic asthma or OCS dependent asthma inadequately controlled with medium to high dose of inhaled corticosteroids and an additional asthma controller AND for Fast start program Blood EOS ≥300 cell/uL, and ≥2 exacerbations, OR OCS dependence and blood EOS ≥150 cell/uL	Subcu: Pre-filled syringes SA : 400 mg initial dosem then 200 mg q2w SA+OCS, AD or CRSwNP: 600 mg initital dose then 300 mg q2w
Tezepelumab (Tezspire) \$26 000/year	Severe asthma and is 12 years or older Inadequately controlled with high dose ICS (minimum 500 mcg fluticasone proprionate or equivalent) and an additional asthma controller(s) (e.g. LABA) Has experienced two or more clinically significant asthma exacerbations in the past 12 months (Systemic corticosteroids for at least three days, emergency room visit, or hospitalization)	Subcu 210 mg Q 4 weeks

Research that impacts clinical practice 3. What is possible in response and remission?

Data suggests earlier intervention predicts greater likelihood of remission¹

T2 comorbidities may predict biologic effectiveness Important to proactively

assess for T2 comorbidities² Baseline BEC and FeNO associated with greater improvement in FEV1³ Less improvement in exacerbations with biologic therapy in Low T2 cluster⁴

1. FULL BEAM: Defining and characterizing responders and non-responders to biologic treatment in severe asthma

2 .PRISM II: ImPact of comoRbidity In Severe asthMa patients

3. IGNITE: Association between post-treatment outcomes and pre-biologic BEC

4. EMBER Objective 3: Investigate non T2 and T2 asthma group responses to intervention with biologics

T2: Type 2, FEV1: Forced Expiratory Volume 1 second, BEC: Blood eosinophil count

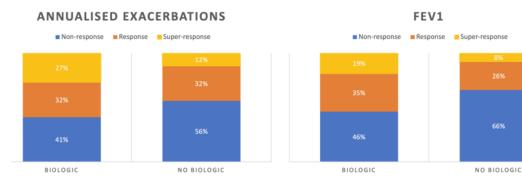
ISAR

LUMINANT: assessing response in severe asthma

Biologic Responders And Super-responders in the International Severe Asthma Registry ATS 2023

Table 1. Single domain definition of response andsuper-response in patients with severe asthma betweenbaseline and month 12 visit

Domain	Definition of responders	Definition of super- responders	Excluded from analysis
Asthma exacerbations	≥ 50% reduction in annualised exacerbation rate	Exacerbation elimination	Zero annualised exacerbations at baseline
FEV ₁	≥ 100 mL improvement in post bronchodilator FEV ₁	≥ 500 mL improvement in post bronchodilator FEV ₁	Not applicable
Asthma control	Improved asthma control by category (controlled, partial, poor)	New attainment of well-controlled asthma	Well-controlled asthma at baseline
Long-term oral corticosteroid (LTOCS) burden	Reduction in LTOCS (mg)	Cessation of LTOCS or weaning to adrenal insufficiency dose ≥ 5 mg	Not on LTOCS at baseline


Table 2: Baseline characteristics of the total LUMINANT cohort, those who were initiated on biologics and those who were not

	Biologic n = 2116	Non-biologic n = 6330	P-value
DEMOGRAPHICS			
Sex (female), % (n/N)	62% (1311 / 2116)	62% (3893 / 6330)	0.71
White race, % (n/N)	78% (1471 / 1876)	79% (4380 / 5573)	
Age (years), mean ± SD (n)	53 ± 15 (2115)	58 ± 17 (6335)	<0.001
BMI, mean ± SD (n)	29.1 ± 7 (1862)	29.6 ± 8 (4995)	0.03
Smoking status never smoker, % (n/N)	62% (1309 / 2116)	45% (2858 / 6335)	<0.001
Asthma onset, mean ± SD (n)	29 ± 19 (1449)	31 ± 20 (2126)	<0.001
ASTHMA STATUS			
Baseline FEV ₁ pre-bronchodilator, mean ± SD (n)	1.9 ± 0.8 (1516)	2.1 ± 0.8 (3678)	< 0.001
FEV ₁ reversibility, % (n)	16% (178)	12% (346)	< 0.001
Poor asthma control, % (n/N)	75% (973 / 1299)	56% (1277 / 2268)	<0.001
Baseline annualised exacerbations, mean ± SD (n)	3.8 ± 4 (1711)	1.6 ± 2 (2688)	<0.001
Baseline annualised exacerbations (categorical), %			
0	11%	30%	
1–3	48%	58%	< 0.001
4–5	20%	7%	~0.001
≥ 6	21%	5%	
LTOCS, % (n/N)	43% (901 / 2116)	14% (878 / 6335)	<0.001
Anti-IgE, % (n)	38% (809)	N/A	
Anti–IL-5/5R, % (n)	59% (1242)	N/A	
Anti–IL-4/13, % (n)	3% (63)	N/A	
BIOMARKERS			
Blood eosinophil count, mean ± SD (n)	598 ± 893 (504)	617 ± 820 (954)	0.7
FeNO (ppb), mean ± SD (n)	49 ± 46 (800)	47 ± 46 (1532)	0.3
IgE, mean ± SD (n)	443 ± 1003 (1273)	417 ± 1306 (2441)	0.5
Sensitised to perennial allergens, % (n/N)	39% (671 / 1724)	44% (1844 / 4177)	0.001

Response was more frequently achieved among participants initiating biologics versus

LUMINANT: assessing response in severe asthma

Figure 1. Proportion of responders (orange), super-responders (yellow) and non-responders (blue) across single domains in those initiated on biologics, with \geq 24 weeks follow up, and those who were not initiated on biologics

ASTHMA CONTROL

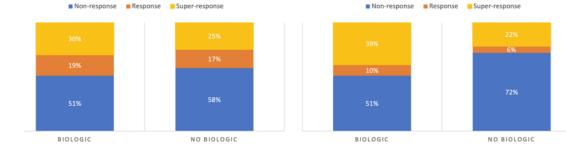


Table 3. Proportion of patients that met the criteria of a single domain of response among those who did and did not initiate a biologic medication between the baseline and follow-up visit

	Biologic	Non-biologic	p-value
RESPONSE, % (n/N)			
Exacerbation reduced ≥ 50%	59% (806 / 1375)	44% (359 / 814)	<0.001
FEV ₁ improved ≥ 100 mL	54% (358 / 665)	34% (354 / 1048)	<0.001
Asthma control improved	49% (524 / 1072)	42% (299 / 706)	0.007
LTOCS dose reduced	49% (255 / 517)	28% (32 / 112)	<0.001
SUPER-RESPONSE, % (n/N)			
Exacerbation elimination	27% (442 / 1620)	12% (242 / 1967)	<0.001
FEV ₁ improved ≥ 500 mL	19% (124 / 665)	8% (86 / 1048)	<0.001
New good asthma control	30% (318 1072)	25% (196 / 706)	0.016
LTOCS super-response	39% (200 / 517)	22% (25 / 112)	<0.001

Conclusions

- Patients with severe asthma who initiated biologics had greater disease severity at baseline than those who did not initiate biologics, but biomarker levels were similar
- Only 5.3% of study participants met even basic criteria for clinical trials

- Clinical response and super-response to biologics was observed in all four domains
- Super-response was more frequent amongst biologic initiators than non-initiators
- In the context of differing baseline impairment, response to biologics may differ by biologic class

An expert consensus framework for asthma remission as a treatment goal

	Check	1	a second second	
0	Gneck	FOF	upua	ues

Andrew Menzies-Gow, PhD,^a Mona Bafadhel, PhD,^b William W. Busse, MD,^c Thomas B. Casale, MD,^d Janwillem W. H. Kocks, MD, PhD,^{e,f,g} Ian D. Pavord, MD,^b Stanley J. Szefler, MD,^h Prescott G. Woodruff, MD,ⁱ Alexander de Giorgio-Miller, PhD,^j Frank Trudo, MD,^k Malin Fageras, PhD,^l and Christopher S. Ambrose, MD^m

London, Oxford, and Cambridge, United Kingdom; Madison, Wis; Tampa, Fla; Groningen, The Netherlands; Singapore; Aurora, Colo; San Francisco, Calif; Wilmington, Del; Gothenburg, Sweden; and Gaithersburg, Md

Clinical Remission on Treatment	Clinical Remission off Treatment
For ≥12 months:	Same criteria maintained without asthma
 Sustained absence of significant asthma symptoms based on validated instrument, and 	treatment for ≥12 months
 Optimization and stabilization of lung function, and 	
 Patient and HCP agreement regarding disease remission, and 	
 No use of systemic corticosteroid therapy for exacerbation 	
treatment or long-term disease control	
Complete Remission on Treatment	Complete Remission off Treatment
Complete Remission on Treatment	Same criteria maintained without asthma

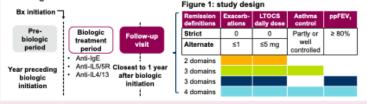
FIG 1. Generalized framework for remission in asthma. Criteria for clinical and complete remission, on and off treatment, were identified by consensus among clinical experts. *FENO*, Fractional exhaled nitric oxide. *Blood eosinophil counts and FENO are less relevant for T2-low asthma.

BEAM - remission

Clinical remission following biologic initiation in severe asthma: results of the International Severe Asthma Registry (ISAR)

G. Scelo,¹ T. N. Tran,² T. T. Le,² M. Faregås,³ N. Martin,⁴ A. N. Menzies-Gow,⁴ E. Wang,⁵ M. E. Wechsler,⁶ G. W. Canonica,⁷ E. Heffler,⁸ L. G. Heaney,⁹ D. J. Jackson,¹⁰ P. E. Pfeffer,¹¹ J. Busby,¹² C. M. Porsbjerg,¹³ M. Hew,¹⁴ M. Peters,¹⁵ P. G. Gibson,¹⁶ M. Al-Ahmad,¹⁷ C. Bergeron,¹⁸ M. Sadatsafavi,¹⁹ L. Perez-De-Llano,²⁰ B. G. Cosio,²¹ P. Kuna,²² D. W. Perng,²³ T. Iwanaga,²⁴ C. A. Torres-Duque,²⁵ D. Larenas-Linnemann,²⁶ B. Mahboub,²⁷ R. Al- Lehebi,²⁴ J. A. Fonseca,²⁹ C. K. Rhee,³⁰ J. Máspero,³¹ M. S. Koh,³² G. C. Christoff,³³ T. A. Popov,³⁴ J. Kwiatek,³⁵ V. Carter,¹ C. Goh,¹ L. Bulathsinhala,¹ A. Beastall,¹ D. Price³⁶

¹Observational and Pragmatic Research Institute, Singapore; Optimum Patient Care Global Cambridge (UK); ²BioPharmaceuticals Medical, AstraZeneca - Gaithersburg, MD (USA); ³BioPharmaceuticals Medical, AstraZeneca - Gaithersburg, MD (USA); ³BioPh


Why did we perform this research?

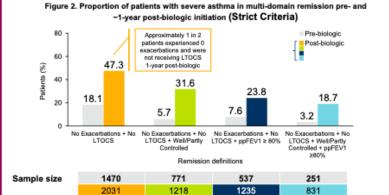
- Despite the emergence of common domains of asthma remission, there is little agreement on clinically useful criteria for identifying remission in real-life.
- Our aim was to explore different definitions of remission using multiple asthma outcome domains, and to quantify the prevalence of remission when treated with biologics using these definitions in adults with severe asthma.

How did we perform this research?

Methods

- This was a registry-based cohort study including data from 23 countries sharing data with ISAR between May 1st 2017 and Dec 5th 2022.
- Pre and post-biologic outcomes were described across 4 domains: exacerbation rate, LTOCS daily dose, asthma control status and ppFEV₁, and remission defined using various combinations of these domains using strict and alternate criteria (See Figure 1).
- Patients were aged ≥18 years with severe asthma, with pre- and postbiologic data for ≥1 domain.

See Supplementary Table 1 for outcome definitions and timing of assessments



Scan QR code to obtain a copy of these materials. Materials obtained through this QR code are for personal use only and may not be reproduced without permission from the authors of this poster.

Corresponding author ental address:: David@opt.sg Poster presented at ERS International Congress, Milan, Italy, 9-13 Sept 2023

4≥ 1 hospitalized or ≥3 exacerbations in total

How might this impact current clinical practice?

 Almost 1 in 5 adults with severe asthma met criteria for clinical remission in all 4 domains 1 year following biologic initiation

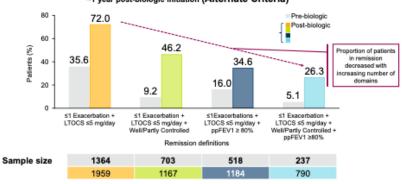
AR: allergic rhinitis; BEC: blood eosinophil count; CRS: chronic rhinosinusitis; FeNO: fractional exhaled

nasal polyposis; OPRI: Observational & Pragmatic Research Institute; ppFEV,: percent predicted forced

nitric oxide; ISAR: International Severe Asthma Registry; LTOCS: long-term oral corticosteroid; NP:

Abbreviations

expiratory flow in one second


 Our results may be useful in informing physicians of the likelihood of remission 1-year post biologic, specific to domains of interest to patients

Acknowledgments

This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pile Ltd and was partially funded by Optimum Patient Care Global and AstraZeneca Ltd. No funding was received by OPRI for its contribution.

Medical writing support was provided by Dr Ruth B. Murray, Medscript Ltd, NZ.

Figure 3. Proportion of patients with severe asthma in multi-domain remission pre- and ~1 year post-biologic initiation (Alternate Criteria)

Identification of a continuum of remission according to type and number of domains highlights the need for a universal approach to assess remission

Disclosures

GS, VC, CG, LB, and AB are employees of OPRI. TNT, TTL, MF, NM and ANM-G are employees of AstraZeneca; DP: has consultancy agreements with Amgen, AZ, Boehringer Ingelheim, Chiesi, GSK, Mylan, Mundiplamma, Novartis, Prizer, Teva Pharmaceuticals, and Theravance. All other disclosures available or GPC

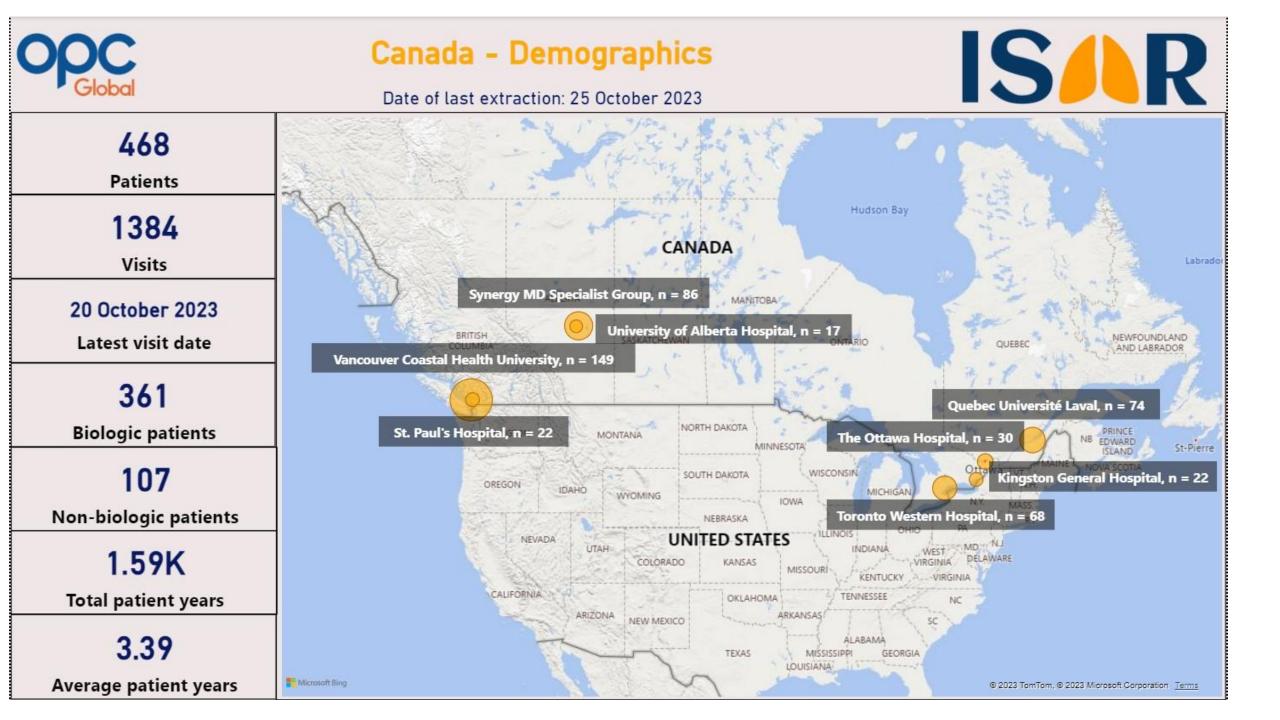
IS/**R**

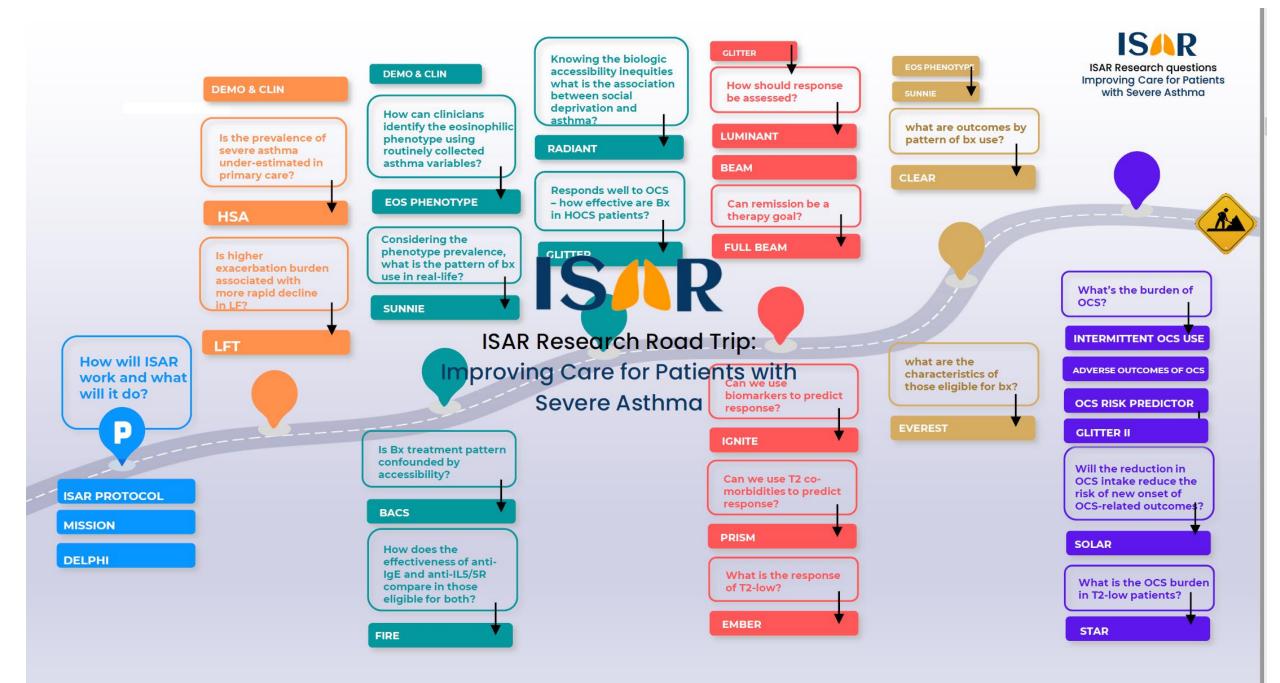
1891

Responders/Remission

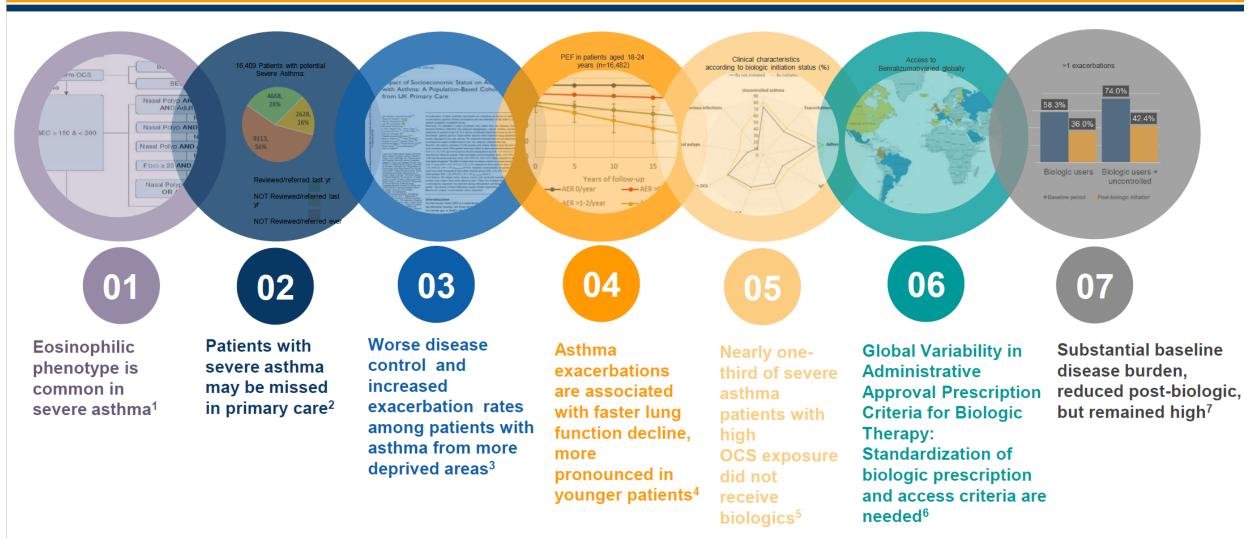
- Similar biomarkers in patients initiating biologics or not
 - But less LTOCS and exacerbations in non initiators
- 5.3% of biologic initiators would have met basic criteria for clinical trial
- More chance to have super responders if initiated on biologics
- Remission:
 - 1 out of 5 patients initiated on biologics
 - Less likely of higher exacerbations and longer asthma duration

Severe asthma


- Importance of SA diagnosis and co-existing diseases adherence/education/interdisciplinary approach/Phenotype
- Significant overlap in biologic eligibility
 - T2 high asthma phenotype
 - reassess periodically and switch as needed
- Biologics:
 - Reduction in exacerbation ~ 50-70%
 - Weaning OCS ~ 50%
 - Stabilize or improve lung function (~150 ml)
 - Decrease symptoms/disease burden
 - Remission in 10-40%
- OCS life long: target < 2g (ideally < 0.5g) as risks++
- Lung function: influence on exacerbations and mortality


ISAR-Socioeconomy disparity in severe asthma

Objective 5


ISAR Global Reach – 28 Countries across 5 Continents

Research that impacts clinical practice 1. Who, what and when of severe and high risk asthma

1.Eosinophilic and non-eosinophilic asthma: A consensus framework, Heaney L, et al. Chest 2021;160(3):814-30. 2. Hidden severe asthma (HSA) patients in UK primary care, Ryan D, Price D et al. J Allergy Clin Immunol Pract 2021;9(4):1612-1623.e9 3. RADIANT: Differences in asthma disease severity by socioeconomic status and ethnicity, Busby, J. et al. J Asthma Allergy. 2021 Nov 10;14:1375-1388, 4. Lung Function Trajectory (LFT), Soremekun S et al. Thorax 2022;0:1–10. doi:10.1136/thoraxjnl-2021-217032, 5. GLITTER I: Chen W et al. J Asthma Allergy, 2022;15:1491-1510, 6. BACS, Chen W et al. J Asthma Allergy, 2022;15:1491-1510 7. EVEREST study, Burden of severe asthma by biologic use and eligibility: an analysis of the International Severe Asthma Registry, T. Le, 2022 60: 2143

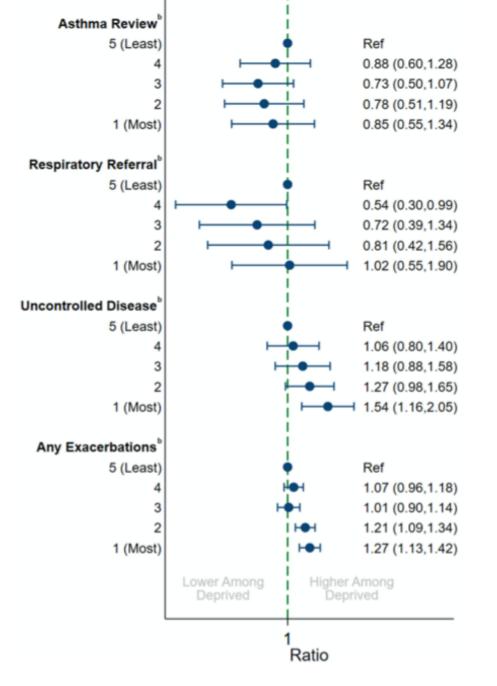
ISAR

OCS: Oral Corticosteroids

Copen Access Full Text Article

ORIGINAL RESEARCH Impact of Socioeconomic Status on Adult Patients with Asthma: A Population-Based Cohort Study from UK Primary Care

Journal of Asthma and Allergy 2021:14 1375–1388


Cohort of 127 040 patients with asthma

Socioeconomic status :

- UK 2011 Indices of Multiple Deprivation (IMD)
- IMD score calculates the relative deprivation of small • areas by taking a weighted average across seven domains (income, employment, health, education, housing, crime, and living environment).

	5 (Least Deprived)	4	3	2		l (Most Deprived)	P- value			
Number Patients	28,215	26,900	24,332	31,05	9	16,534				
Age (years)	51.8 (16.7)	51.1 (17.0)	52.1 (17.1)	50.8 (1	7.0)	50.0 (16.9)	<0.001	57 (12.4%)	<0.001	P-
<35	4911 (17.4%)	5234 (19.5%)	4453 (18.3%)	6330 (20	.4%)	3708 (22.4%)		76 (8.3%)	<0.001	
35–54	I I,553 (40.9%)	10,795 (40.1%)	9369 (38.5%)	12,350 (3	9.8%)	6487 (39.2%)		59 (1.6%)	0.009	value
55–74	8981 (31.8%)	8286 (30.8%)	7994 (32.9%)	9556 (30	.8%)	4911 (29.7%)		31 (1.4%)	0.713	
75+	2770 (9.8%)	2585 (9.6%)	2516 (10.3%)	2823 (9	1%)	1428 (8.6%))6 (0.6%) ≿I (I2.2%)	0.092 <0.001	<0.001
Sex							<0.001	96 (8.4%)	<0.001	
Female	16,362 (58.0%)	15,780 (58.7%)	14,388 (59.1%)	18,617 (5	9.9%)	9961 (60.2%)		8 (10.4%)	<0.001	
Male	11,853 (42.0%)	11,120 (41.3%)	9944 (40.9%)	12,442 (4	0.1%)	6573 (39.8%))5 (1.2%)	<0.001	
Ethnicity				1			<0.001	55 (12.5%)	<0.001	
White	18,268 (97.5%)	16,960 (94.7%)	15,777 (96.2%)	20,517 (9	5.3%)	9737 (88.3%)		21 (2.5%)	0.005	
Asian	304 (1.6%)	710 (4.0%)	449 (2.7%)	769 (3.	· /	933 (8.5%)		8 (0.2%)	0.265	_
Black	45 (0.2%)	104 (0.6%)	61 (0.4%)	143 (0.	· /	185 (1.7%)		6 (0.5%)	0.027	0.001
Mixed	48 (0.3%)	78 (0.4%)	59 (0.4%)	57 (0.3	%)	55 (0.5%)		34 (0.8%)	0.034	0.001
Other	79 (0.4%)	66 (0.4%)	50 (0.3%)	47 (0.2		115 (1.0%)		25 (2.0%) 95 (1.2%)	<0.001 0.154	
BMI (kg/m²)	27.8 (5.8)	27.9 (5.9)	28.2 (6.1)	28.6 (6	.1)	28.9 (6.4)	<0.001	28 (3.8%)	<0.001	<0.001
Alcohol Consumption (Weekly	4.0 (0.0, 10.0)	3.0 (0.0,10.0)	2.0 (0.0,10.0)	2.0 (0.0,	10.0)	2.0 (0.0,10.0)	<0.001	7 (1.3%)	0.345	
Units)								73 (16.2%)	<0.001	<0.001
Smoking Status							<0.001	(400,1000)	<0.001	<0.001
Never-Smoker	16,376 (59.2%)	14,977 (57.3%)	12,492 (55.0%)	16,135 (5	3.1%)	7929 (50.8%)		10 /E (9/)	0.1/0	<0.001
Ex-Smoker	7672 (27.7%)	7483 (28.6%)	6549 (28.9%)	8744 (28	3.8%)	4206 (26.9%)		22 (5.6%)	0.160	_
Current Smoker	3633 (13.1%)	3690 (14.1%)	3657 (16.1%)	5511 (18	8.1%)	3473 (22.3%)		77 (83.3%)	<0.001	<0.001
Any Exacerba	1			I - 1			-		(Continued)	<0.001
Respiratory Referral		1226 (4.3%)	619 (2	2.3%)	76	57 (3.2%)	1094 (3.5%	6)	665 (4.0%)	<0.001

 Table I Comparison of Demographic and Clinical Information by Indices of Multiple Deprivation Quintile

Patients from more deprived areas had:

- poorer asthma disease control,
- lower peak flow, and
- increased exacerbations.

There was evidence that the magnitude of socioeconomic disparities were elevated among

- older patients and
- ethnic minority groups.

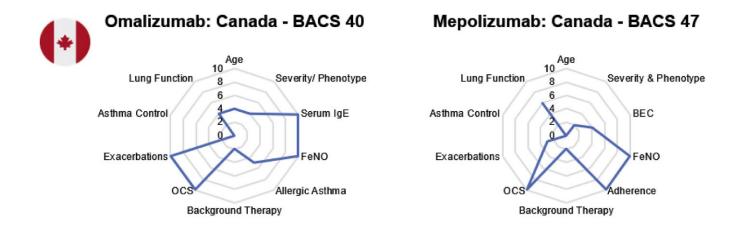
Figure 1 Multivariable association between indices of multiple deprivation quintile and clinical variables^{a. a}Adjusted for year, age (5-year groups) and sex, ^bOdds ratio.

Conclusions

- Education
- Optimization of control and prevention of future risks
- Comorbidities highly prevalent
- Environment friendly inhalers if appropriate
- OCS burden: comorbidities and mortality
- Lung function to maintain to prevent exacerbations and mortality

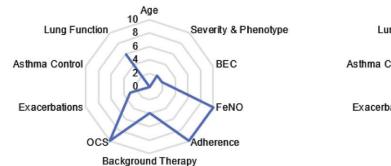
- Mild asthma
 - Consider ICS/Form as needed
- Moderate to Severe:
 - Consider SITT
- Severe asthma:
 - Referral for phenotyping and consideration of biologics
- Remission:
 - Target for more severe asthma patients with biologics
- Deprived area: lower asthma control, lower lung function and higher exacerbations rate

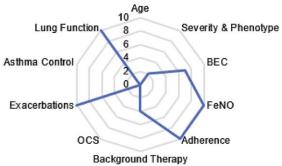
Global Variability in Administrative Approval Prescription Criteria for Biologic Therapy in Severe Asthma


Celeste M. Porsbjerg, MD, PhD, Andrew N. Menzies-Gow, PhD, FRCP, Trung N. Tran, MD, PhD, Ruth B. Murray, PhD, Bindhu Unni, MSc, Shi Ling Audrey Ang, BSc, Marianna Alacqua, MD, PhD, Mona Al-Ahmad, MD, FRCPC, Riyad Al-Lehebi, MD, FRCPC, Alan Altraja, MD, PhD, Andrey S. Belevskiy, MD, PhD, Unnur S. Björnsdóttir, MD, Arnaud Bourdin, MD, PhD, John Busby, PhD, G. Walter Canonica, MD, George C. Christoff, MD, MPH, PhD, Borja G. Cosio, MD, PhD, Richard W. Costello, MB, MD, FRCPI, J. Mark FitzGeald, MD, FRCPC, João A. Fonseca, MD, PhD, Susanne Hansen, PhD, Liam G. Heaney, MD, Enrico Heffler, MD, PhD, Mark Hew, MBBS, PhD, FRACP, Takashi Iwanaga, MD, PhD, David J. Jackson, MBBS, MRCP (UK), PhD, Janwillem W.H. Kocks, MD, PhD, Maria Kallieri, MD, Hsin-Kuo Bruce Ko, MD, PhD, Mariko Siyue Koh, MBBS, MRCP (UK), FCCP, Désirée Larenas-Linnemann, MD, FAAAAI, Dist.Intl.FACAAI, Lauri A. Lehtimäki, MD, PhD, Stelios Loukides, MD, FCCP, Njira Lugogo, MD, Jorge Maspero, PhD, Andriana I.
Papaioannou, MD, PhD, Luis Perez-de-Llano, MD, PhD, Paulo Márcio Pitrez, MD, Todor A. Popov, MD, PhD, Linda M. Rasmussen, MD, PhD, Chin Kook Rhee, MD, PhD, Mohsen Sadatsafavi, MD, PhD, Johannes Schmid, MD, PhD, Salman Siddiqui, PhD, FRCP, Camille Taillé, MD, PhD, Christian Taube, MD, Carlos A. Torres-Duque, MD, Charlotte Ulrik, MD, DMSc, FERS, John W. Upham, MBBS, PhD, FRACP, Eileen Wang, MD, MPH, Michael E. Wechsler, MD, Lakmini Bulathsinhala, MPH, Victoria Carter, BSc, Isha Chaudhry, MSc, Neva Eleangovan, BSc, Naeimeh Hosseini, MD, Mari-Anne Rowlands, PhD, David B. Price, FRCGP, Job F.M. van Boven, PharmD,

PhD

The Journal of Allergy and Clinical Immunology: In Practice Volume 10 Issue 5 Pages 1202-1216.e23 (May 2022) DOI: 10.1016/j.jaip.2021.12.027




Copyright © 2022 The Authors <u>Terms and Conditions</u>

Reslizumab: Canada - BACS 47

Benralizumab: Canada - BACS 53

Terms and Conditions

Biologic prescription criteria differed substantially across 28 countries from five continents. Blood eosinophil count thresholds (usually \$300 cells/mL) and exacerbations were key requirements for anti-IgE/antieIL-5/5R prescriptions in around 80% of licensed countries. Most countries (40% for dupilumab to 54% for mepolizumab) require two or more moderate or severe exacerbations, whereas numbers ranged from none to four. Moreover, 0% (for reslizumab) to 21% (for omalizumab) of countries required long-term oral corticosteroid use. The BACS highlighted marked between-country differences in ease of access. For omalizumab, mepolizumab, benralizumab, and dupilumab, only two, one, four, and seven countries, respectively, scored equal

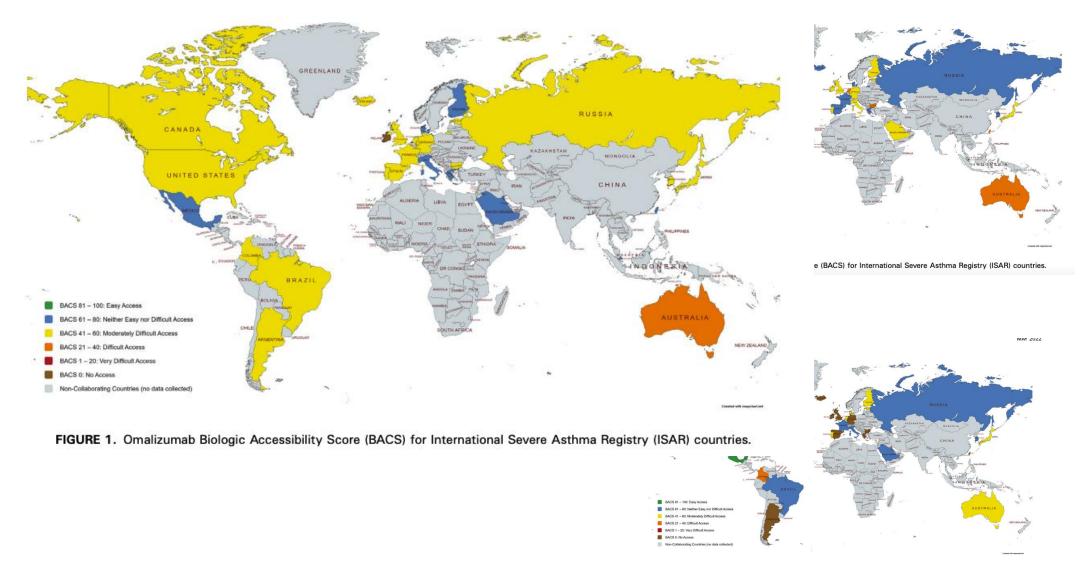


FIGURE 5. Dupilumab Biologic Accessibility Score (BACS) for International Severe Asthma Registry (ISAR) countries.